Công thức nghiệm của phương trình bậc hai
Kiến thức cần nhớ
1. Công thức nghiệm
a) Biệt thức
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) ta có biệt thức Δ như sau:
Δ = b2 - 4ac
Ta sửa dụng biết thức Δ để giải phương trình bậc hai.
b) Công thức nghiệm của phương trình bậc hai
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 - 4ac
+ Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt là
+ Nếu Δ = 0 thì phương trình có nghiệm kép là
+ Nếu Δ < 0 thì phương trình vô nghiệm.
Chú ý: Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a và c trái dấu, tức là ac < 0. Khi đó ta có Δ = b2 - 4ac > 0 ⇒ Phương trình luôn có hai nghiệm phân biệt.
Bài tập tự luyện
Bài 1: Không giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức Δ và xác định số nghiệm của mỗi phương trình sau:
a)
b)
c)
d)
Lời giải
a)
Ta có: a = 7; b = -2; c = 3
Vì nên phương trình đã cho vô nghiệm
b)
Ta có: a = 5; b = ; c = 2
Vì nên phương trình đã cho có một nghiệm.
c)
Ta có: a = ; b = 7; c = .
Vì nên phương trình đã cho có hai nghiệm phân biệt.
d)
Ta có: a = 1,7; b = -1,2; c = -2,1
Vì nên phương trình đã cho có hai nghiệm phân biệt.
Bài 2: Dùng công thức nghiệm của phương trình bậc hai để giải các phương trình sau:
a) 2x2 – 7x + 3 = 0;
b) 6x2 + x + 5 = 0;
c) 6x2 + x – 5 = 0;
d) 3x2 + 5x + 2 = 0;
e) y2 – 8y + 16 = 0;
f) 16z2 + 24z + 9 = 0.
Lời giải
a) Phương trình bậc hai 2x2 – 7x + 3 = 0
Có: a = 2; b = -7; c = 3; Δ = b2 – 4ac = (-7)2 – 4.2.3 = 25 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là 3 và
b) Phương trình bậc hai 6x2 + x + 5 = 0
Có a = 6; b = 1; c = 5; Δ = b2 – 4ac = 12 – 4.5.6 = -119 < 0
Vậy phương trình vô nghiệm.
c) Phương trình bậc hai 6x2 + x – 5 = 0
Có a = 6; b = 1; c = -5; Δ = b2 – 4ac = 12 – 4.6.(-5) = 121 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là -1 và
d) Phương trình bậc hai 3x2 + 5x + 2 = 0
Có a = 3; b = 5; c = 2; Δ = b2 – 4ac = 52 – 4.3.2 = 1 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là -1 và
e) Phương trình bậc hai y2 – 8y + 16 = 0
Có a = 1; b = -8; c = 16; Δ = b2 – 4ac = (-8)2 – 4.1.16 = 0.
Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :
Vậy phương trình có nghiệm kép y = 4.
f) Phương trình bậc hai 16z2 + 24z + 9 = 0
Có a = 16; b = 24; c = 9; Δ = b2 – 4ac = 242 – 4.16.9 = 0
Áp dụng công thức nghiệm ta có phương trình có nghiệm kép:
Vậy phương trình có nghiệm kép
Bài 3: Xác định các hệ số a, b, c ; tính biệt thức Δ rồi tìm nghiệm của các phương trình :
a. 2x2 – 5x + 1 = 0 b. 4x2 + 4x + 1 = 0
c. 5x2 – x + 2 = 0 d. -3x2 + 2x + 8 = 0
Lời giải:
a. Phương trình 2x2 – 5x + 1 = 0 có a = 2, b = -5, c = 1
Ta có: Δ = b2 – 4ac = (-5)2 – 4.2.1 = 25 – 8 = 17 > 0
√Δ = √17
Phương trình có 2 nghiệm phân biệt :
b. Phương trình 4x2 + 4x + 1 = 0 có a = 4, b = 4, c = 1
Ta có: Δ = b2 – 4ac = 42 – 4.4.1 = 16 – 16 = 0
Phương trình có nghiệm kép :
c. Phương trình 5x2 – x + 2 = 0 có a = 5, b = -1, c = 2
Ta có: Δ = b2 – 4ac = (-1)2 – 4.5.2 = 1 – 40 = -39 < 0
Vậy phương trình vô nghiệm.
d. Phương trình -3x2 + 2x + 8 = 0 có a = -3, b = 2, c = 8
Ta có: Δ = b2 – 4ac = 22 – 4.(-3).8 = 4 + 96 = 100 > 0
√Δ = √100 = 10
Phương trình có 2 nghiệm phân biệt :
Bài 4: Xác định các hệ số a, b, c rồi giải phương trình :
Lời giải:
a. Phương trình 2x2 - 2√2 x + 1 = 0 có a = 2, b = -2√2 , c = 1
Ta có: Δ = b2 – 4ac = (-2√2 )2 – 4.2.1 = 8 – 8 = 0
Phương trình có nghiệm kép :
b. Phương trình 2x2 – (1 - 2√2 )x - √2 = 0 có a = 2, b = -(1 - 2√2 ), c = -√2
Ta có: Δ = b2 – 4ac = [-(1 - 2√2 )]2 – 4.2.(-√2 )
= 1 - 4√2 + 8 + 8√2 = 1 + 4√2 + 8
= 1 + 2.2√2 + (2√2 )2 = (1 + 2√2 )2 > 0
= 1 + 2√2
Phương trình có 2 nghiệm phân biệt :
d. Phương trình 3x2 + 7,9x + 3,36 = 0 có a = 3, b = 7,9, c = 3,36
Ta có: Δ = b2 – 4ac = 7,92 – 4.3.3,36 = 62,41 – 40,32 = 22,09 > 0
√Δ = √22,09 = 4,7
Phương trình có 2 nghiệm phân biệt :
Bài 5: Giải phương trình bằng đồ thị:
Cho phương trình 2x2 + x – 3 = 0.
a. Vẽ các đồ thị của hai hàm số y = 2x2, y = -x + 3 trong cùng một mặt phẳng tọa độ.
b. Tìm hoành độ của mỗi giao điểm của hai đồ thị. Hãy giải thích vì sao các hoành độ này đều là nghiệm của phương trình đã cho.
c. Giải phương trình đã cho bằng công thức nghiệm, so sánh với kết quả tìm được trong câu b.
Lời giải:
a. *Vẽ đồ thị hàm số y = 2x2
x | -2 | -1 | 0 | 1 | 2 |
y = 2x2 | 8 | 2 | 0 | 2 | 8 |
*Vẽ đồ thị hàm số y = -x + 3
Cho x = 0 thì y = 3 ⇒ (0; 3)
Cho y = 0 thì x = 3 ⇒ (3; 0)
b. Ta có: I(-1,5; 4,5), J(1; 2)
*x = -1,5 là nghiệm của phương trình 2x2 + x – 3 = 0 vì:
2(-1,5)2 + (-1,5) – 3 = 4,5 – 4,5 = 0
*x = 1 là nghiệm của phương trình 2x2 + x – 3 = 0 vì:
2.12 + 1 – 3 = 3 – 3 = 0
c. Ta có: ∆ = b2 – 4ac = 12 – 4.2.(-3) = 1 + 24 = 25 > 0
√∆ = √25 = 5
Phương trình có 2 nghiệm phân biệt :
Bài 6: Cho phương trình
a. Vẽ các đồ thị của hai hàm sô , y = 2x – 1 trong cùng một mặt phẳng tọa độ. Dùng đồ thị tìm giá trị gần đúng nghiệm của phương trình (làm tròn đến chữ số thập phân thứ hai)
b. Giải phương trình đã cho bằng công thức nghiệm, so sánh với kết quả tìm được trong câu a.
Lời giải:
a. *Vẽ đồ thị hàm số
x | -2 | -1 | 0 | 1 | 2 |
2 | 1/2 | 0 | 1/2 | 2 |
*Vẽ đồ thị hàm số y = 2x – 1
Cho x = 0 thì y = -1 ⇒ (0; -1)
Cho y = 0 thì x = 1/2 ⇒ (1/2 ; 0)
Bài 7: Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép:
a. mx2– 2(m – 1)x + 2 = 0 b. 3x2 + (m + 1)x + 4 = 0
Lời giải:
a. Phương trình mx2 – 2(m – 1)x + 2 = 0 có nghiệm kép khi và chỉ khi m ≠ 0 và Δ = 0
Ta có: Δ = [-2(m – 1)]2 – 4.m.2 = 4(m2 – 2m + 1) – 8m
= 4(m2 – 4m + 1)
Δ = 0 ⇔ 4(m2 – 4m + 1) = 0 ⇔ m2 – 4m + 1 = 0
Giải phương trình m2 – 4m + 1 = 0. Ta có:
Δm = (-4)2 – 4.1.1 = 16 – 4 = 12 > 0
Vậy với m = 2 + √3 hoặc m = 2 - √3 thì phương trình đã cho có nghiệm kép.
b. Phương trình 3x2 + (m + 1)x + 4 = 0 có nghiệm kép khi và chỉ khi Δ = 0
Ta có : Δ = (m + 1)2 – 4.3.4 = m2 + 2m + 1 – 48 = m2 + 2m – 47
Δ = 0 ⇔ m2 + 2m – 47 = 0
Giải phương trình m2 + 2m – 47 = 0. Ta có:
Δm = 22 – 4.1.(-47) = 4 + 188 = 192 > 0
Vậy với m = 4√3 – 1 hoặc m = -1 - 4√3 thì phương trình đã cho có nghiệm kép.
Bài 8: Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m:
a. mx2 + (2m – 1)x + m + 2 = 0
b. 2x2 – (4m + 3)x + 2m2 – 1 = 0
Lời giải:
a. mx2 + (2m – 1)x + m + 2 = 0 (1)
*Nếu m = 0, ta có (1) ⇔ -x + 2 = 0 ⇔ x = 2
*Nếu m ≠ 0 thì (1) có nghiệm khi và chỉ khi Δ ≥ 0
Ta có : Δ = (2m – 1)2 – 4m(m + 2) = 4m2 – 4m + 1 – 4m2 – 8m
= -12m + 1
Δ ≥ 0 ⇔ -12m + 1 ≥ 0 ⇔ m ≤ 1/12
Vậy khi m ≤ 1/12 thì phương trình đã cho có nghiệm.
Giải phương trình (1) theo m :
b. 2x2 – (4m + 3)x + 2m2 – 1 = 0 (2)
Phương trình (2) có nghiệm khi và chỉ khi Δ ≥ 0
Ta có: Δ = [-(4m + 3)]2 – 4.2(2m2 – 1)
= 16m2 + 24m + 9 – 16m2 + 8 = 24m + 17
Δ ≥ 0 ⇔ 24m + 17 ≥ 0 ⇔ m ≥ -17/24
Vậy khi m ≥ -17/24 thì phương trình đã cho có nghiệm.
Giải phương trình (2) theo m:
Bài 9: Vì sao khi phương trình ax2 + bx + c = 0 có các hệ số a và c trái dấu thì nó có nghiệm?
Áp dụng: Không tính Δ, hãy giải thích vì sao mỗi phương trình sau có nghiệm:
a. 3x2– x – 8 = 0
b. 2004x2 + 2x - 1185√5 = 0
c. 3√2 x2 + (√3 - √2 )x + √2 - √3 = 0
d. 2010x2 + 5x – m2 = 0
Lời giải:
Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0
Ta có: Δ = b2 – 4ac, trong đó b2 > 0
Nếu -4ac > 0 thì Δ luôn lớn hơn 0.
Khi Δ > 0 nghĩa là phương trình có hai nghiệm phân biệt.
Áp dụng :
a. Phương trình 3x2 – x – 8 = 0 có:
a = 3, c = -8 nên ac < 0
Vậy phương trình có 2 nghiệm phân biệt.
b. Phương trình 2004x2 + 2x - 1185√5 = 0 có:
a = 2004, c = -1185√5 nên ac < 0
Vậy phương trình có 2 nghiệm phân biệt.
c. Phương trình 3√2 x2 + (√3 - √2 )x + √2 - √3 = 0 có:
a = 3√2 , c = √2 - √3 nên ac < 0 (vì √2 < √3 )
Vậy phương trình có 2 nghiệm phân biệt.
d. 2010x2 + 5x – m2 = 0 (1)
*Với m = 0 thì (1) ⇔ 2010x2 + 5x = 0: phương trình có 2 nghiệm.
*Với m ≠ 0 ta có: m2 > 0, suy ra: -m2 < 0
Vì a = 2010 > 0, c = -m2 < 0 nên ac < 0
Vậy phương trình (1) có 2 nghiệm phân biệt.
Xem thêm các dạng bài tập toán hay khác:
50 Bài tập Giải bài toán bằng cách lập phương trình (có đáp án năm 2023)
50 Bài tập Hệ thức Vi – ét và ứng dụng (có đáp án năm 2023)
50 Bài tập Phương trình bậc hai một ẩn (có đáp án năm 2023)
50 Bài tập Giải bài toán bằng cách lập hệ phương trình (có đáp án năm 2023)
50 Bài tập Giải hệ phương trình bằng phương pháp cộng đại số (có đáp án năm 2023)