Kiến thức cần nhớ
I. Lý thuyết
1. Hệ thức Vi – ét
Phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có nghiệm dù đó là hai nghiệm phân biệt hay nghiệm kép thì ta đều có thể viết được dưới dạng:
Định lí Vi – ét
Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) thì ta có:
Nhận xét: Nhờ định lý Vi – ét, nếu đã biết một nghiệm của phương trình bậc hai thì có thế suy ra nghiệm kia.
2. Ứng dụng của định lý Vi – ét.
a) Ứng dụng trong giải phương trình (bằng cách nhẩm miệng)
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là x2 =
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a - b + c = 0 thì phương trình có một nghiệm là x1 = -1 và nghiệm còn lại là x2 = -
b) Tìm hai số khi biết tổng và tích.
+ Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình bậc hai x2 - Sx + P = 0
+ Điều kiện để có hai số đó là S2 - 4P ≥ 0
Bài tập tự luyện
Bài 1: Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (...):
a) 2x2 – 17x + 1 = 0;
Δ = …; x1 + x2 = …; x1.x2 = …;
b) 5x2 – x – 35 = 0;
Δ = …; x1 + x2 = …; x1.x2 = …;
c) 8x2 – x + 1 = 0 ;
Δ = …; x1 + x2 = …; x1.x2 = …;
d) 25x2 + 10x + 1 = 0 ;
Δ = …; x1 + x2 = …; x1.x2 = …;
Lời giải
a) 2x2 – 17x + 1 = 0
Có a = 2; b = -17; c = 1
Δ = b2 – 4ac = (-17)2 – 4.2.1 = 281 > 0.
Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:
x1 + x2 = =
x1.x2 = = .
b) 5x2 – x – 35 = 0
Có a = 5; b = -1; c = -35;
Δ = b2 – 4ac = (-1)2 – 4.5.(-35) = 701 > 0
Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:
x1 + x2 = = =
x1.x2 = = = -7.
c) 8x2 – x + 1 = 0
Có a = 8; b = -1; c = 1
Δ = b2 – 4ac = (-1)2 – 4.8.1 = -31 < 0
Phương trình vô nghiệm nên không tồn tại x1 ; x2.
d) 25x2 + 10x + 1 = 0
Có a = 25; b = 10; c = 1
Δ = b2 – 4ac = 102 – 4.25.1 = 0
Khi đó theo hệ thức Vi-et có:
x1 + x2 = = =
x1.x2 = = .
Bài 2: Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
a) 35x2 – 37x + 2 = 0;
b) 7x2 + 500x – 507 = 0;
c) x2 – 49x – 50 = 0;
d) 4321x2 + 21x – 4300 = 0.
Lời giải
a) Phương trình 35x2 – 37x + 2 = 0
Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = = .
Vậy tập nghiệm của phương trình là S =
b) Phương trình 7x2 + 500x – 507 = 0
Có a = 7; b = 500; c = -507 ⇒ a + b + c = 7 + 500 – 507 = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = = .
Vậy tập nghiệm của phương trình là S =
c) Phương trình x2 – 49x – 50 = 0
Có a = 1; b = -49; c = -50 ⇒ a – b + c = 1 – (-49) – 50 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = = .
Vậy tập nghiệm của phương trình là S =
d) Phương trình 4321x2 + 21x – 4300 = 0
Có a = 4321; b = 21; c = -4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = = .
Vậy tập nghiệm của phương trình là S =
Bài 3: Dùng hệ thức Vi-et để tính nhẩm các nghiệm của phương trình.
a) x2 – 7x + 12 = 0;
b) x2 + 7x + 12 = 0.
Lời giải
a) x2 – 7x + 12 = 0
Có a = 1; b = -7; c = 12
⇒ Δ = b2 – 4ac = (-7)2 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là 3 và 4.
b) x2 + 7x + 12 = 0
Có a = 1; b = 7; c = 12
⇒ Δ = b2 – 4ac = 72 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là -3 và -4.
Bài 4: Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 32 , uv = 231
b) u + v = -8, uv = -105
c) u + v = 2, uv = 9
Lời giải
a) S = 32; P = 231 ⇒ S2 – 4P = 322 – 4.231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x2 – 32x + 231 = 0.
Ta có: Δ = (-32)2 – 4.231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
b) S = -8; P = -105 ⇒ S2 – 4P = (-8)2 – 4.(-105) = 484 > 0
⇒ u và v là hai nghiệm của phương trình: x2 + 8x – 105 = 0
Ta có: Δ’ = 42 – 1.(-105) = 121 > 0
Phương trình có hai nghiệm:
Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.
c) S = 2 ; P = 9 ⇒ S2 – 4P = 22 – 4.9 = -32 < 0
⇒ Không tồn tại u và v thỏa mãn.
Bài 5: Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:
a) 4x2 + 2x – 5 = 0;
b) 9x2 – 12x + 4 = 0;
c) 5x2 + x + 2 = 0;
d) 159x2 – 2x – 1 = 0.
Lời giải
a) Phương trình 4x2 + 2x – 5 = 0
Có a = 4; b = 2; c = -5, a.c < 0
⇒ Phương trình có hai nghiệm x1; x2
Theo hệ thức Vi-et ta có:
b) Phương trình 9x2 – 12x + 4 = 0
Có a = 9; b' = -6; c = 4 ⇒ Δ’ = (-6)2 – 4.9 = 0
⇒ Phương trình có nghiệm kép x1 = x2.
Theo hệ thức Vi-et ta có:
c) Phương trình 5x2 + x + 2 = 0
Có a = 5; b = 1; c = 2 ⇒ Δ = 12 – 4.2.5 = -39 < 0
⇒ Phương trình vô nghiệm.
d) Phương trình 159x2 – 2x – 1 = 0
Có a = 159; b = -2; c = -1; a.c < 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2.
Theo hệ thức Vi-et ta có:
Bài 6: Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.
a) x2 – 2x + m = 0;
b) x2 + 2(m – 1)x + m2 = 0.
Lời giải
a) Phương trình x2 – 2x + m = 0
Có a = 1; b = -2; c = m nên b’= -1
⇒ Δ’ = (-1)2 – 1.m = 1 – m
Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ 1 – m ≥ 0 ⇔ m ≤ 1.
Theo hệ thức Vi-et ta có:
Vậy với m ≤ 1, phương trình có hai nghiệm có tổng bằng 2; tích bằng m.
b) Phương trình x2 + 2(m – 1)x + m2 = 0
Có a = 1; b = 2(m – 1); c = m2 nên b’ = m - 1
⇒ Δ’ = b'2 – ac = (m – 1)2 – m2 = - m2= - 2m + 1.
Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ - 2m + 1 ≥ 0 ⇔ 2m ≤ 1
Theo hệ thức Vi-et ta có:
Vậy với m ≤ , phương trình có hai nghiệm có tổng bằng -2(m – 1), tích bằng m2.
Bài 7: Tính nhẩm nghiệm của các phương trình:
a)
b)
c)
d) với
Lời giải
a) 1,5x2 – 1,6x + 0,1 = 0
Có a = 1,5; b = -1,6; c = 0,1
⇒ a + b + c = 1,5 – 1,6 + 0,1 = 0
⇒ Phương trình có hai nghiệm x1 = 1; x2 = = = .
Vậy phương trình đã cho có tập nghiệm
b)
Ta có: a = ; b = ; c = -1.
.
Phương trình có hai nghiệm phân biệt
Vậy phương trình đã cho có tập nghiệm
c)
Ta có a = 2 - ; b = 2; c =
= 0
Phương trình có hai nghiệm phân biệt:
Vậy tập nghiệm của phương trình là
d)
Có a = m – 1; b = -(2m + 3); c = m + 4
⇒ a + b + c = (m – 1) – (2m + 3) + m + 4 = m - 1 – 2m – 3 + m + 4 = 0
⇒ Phương trình có hai nghiệm với m .
Vậy tập nghiệm của phương trình là .
Bài 8: Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 42, uv = 441
b) u + v = -42, uv = -400
c) u – v = 5, uv = 24
Lời giải
a) S = 42; P = 441 ⇒ S2 – 4P = 422 – 4.441 = 0
⇒ u và v là hai nghiệm của phương trình: x2 – 42x + 441 = 0
Có: Δ’ = (-21)2 – 441 = 0
⇒ Phương trình có nghiệm kép x1 = x2 = .
Vậy u = v = 21.
b) S = -42; P = -400 ⇒ S2 – 4P = (-42)2 – 4.(-400) = 3364 > 0
⇒ u và v là hai nghiệm của phương trình: x2 + 42x – 400 = 0
Có Δ’ = 212 – 1.(-400) = 841
⇒ Phương trình có hai nghiệm phân biệt:
Vậy u = 8; v = -50 hoặc u = -50; v = 8.
c) u – v = 5 ⇒ u + (-v) = 5
u.v = 24 ⇒ u.(-v) = -uv = -24.
Ta tìm u và –v. Từ đó, ta dễ dàng tính được u và v.
S = u + (-v) = 5; P = u. (-v) = -24 ⇒ S2 – 4P = 52 – 4.(-24) = 121 > 0
⇒ u và –v là hai nghiệm của phương trình: x2 – 5x – 24 = 0
Có Δ = (-5)2 – 4.1.(-24) = 121
⇒ Phương trình có hai nghiệm phân biệt
;
+) Với u = 8 thì –v = -3
+) Với u = -3 thì -v = 8
.
Vậy u = 8 thì v = 3 hoặc u = -3 và v = -8
Bài 9: Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
a) 2x2 - 5x + 3; b)3x2 + 8x + 2
Lời giải
* Chứng minh:
Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a.x2 + bx + c (đpcm).
* Áp dụng:
a) 2x2 – 5x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt: