20 Bài tập hằng đẳng thức đáng nhớ Toán 8
1. Phương pháp giải
1. ( a + b )2 = a2 + 2ab + b2
2. ( a - b )2 = a2 - 2ab + b2
3. a2 - b2 = ( a - b )( a + b )
4. ( a + b )3 = a3 + 3a2b + 3ab2 + b3
5. ( a - b )3 = a3 - 3a2b + 3ab2 - b3
6. a3 + b3 = ( a + b )( a2 - ab + b2 )
7. a3 - b3 = ( a - b )( a2 + ab + b2 )
2. Ví dụ minh họa
Ví dụ 1:
a) Tính ( 5x -y )2
b) Viết biểu thức 4x2 - 4x + 1 dưới dạng bình phương của một hiệu
Lời giải:
a) Ta có ( 5x -y )2 = ( 5x )2 - 2.5x.y + ( y )2 = 25x2 - 10xy + y2.
b) Ta có 4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 1 = ( 2x - 1 )2.
Ví dụ 2:
a) Tính ( x - 2 )( x + 2 ).
b) Tính 56.64
Lời giải:
a) Ta có: ( x - 2 )( x + 2 ) = ( x )2 - 22 = x2 - 4.
b) Ta có: 56.64 = ( 60 - 4 )( 60 + 4 ) = 602 - 42 = 3600 - 16 = 3584.
3. Bài tập vận dụng
Bài 1: Điền vào chỗ trống: A = ( 1/2x - y )2 = 1/4x2 - ... + y2
A. 2xy B. xy
C. - 2xy D. 1/2 xy
Lời giải:
Áp dụng hằng đẳng thức (a - b)2 = a2 - 2ab + b2.
Khi đó ta có A = ( 1/2x - y )2 = 1/4x2 - 2.1/2x.y + y2 = 1/4x2 - xy + y2.
Suy ra chỗ trống cần điền là xy.
Chọn đáp án B.
Bài 2: Điều vào chỗ trống: ... = ( 2x - 1 )( 4x2 + 2x + 1 ).
A. 1 - 8x3.
B. 1 - 4x3.
C. x3 - 8.
D. 8x3 - 1.
Lời giải:
Áp dụng hằng đẳng thức a3 - b3 = ( a - b )( a2 + ab + b2 )
Khi đó ta có ( 2x - 1 )( 4x2 + 2x + 1 ) = ( 2x - 1 )[ ( 2x )2 + 2x.1 + 1 ] = ( 2x )3 - 1 = 8x3 - 1.
Suy ra chỗ trống cần điền là 8x3 - 1.
Chọn đáp án D.
Bài 3: Tính giá trị cuả biểu thức A = 8x3 + 12x2y + 6xy2 + y3 tại x = 2 và y = -1.
A. 1 B. 8
C. 27 D. -1
Lời giải:
Áp dụng hằng đẳng thức ( a + b )3 = a3 + 3a2b + 3ab2 + b3.
Khi đó ta có:
A = 8x3 + 12x2y + 6xy2 + y3 = ( 2x )3 + 3.( 2x )2.y + 3.( 2x ).y2 + y3 = ( 2x + y )3
Với x = 2 và y = -1 ta có A = ( 2.2 - 1 )3 = 33 = 27.
Chọn đáp án C.
Bài 4: Tính giá trị của biểu thức A = 352 - 700 + 102.
A. 252. B. 152.
C. 452. D. 202.
Lời giải:
Ta có A = 352 - 700 + 102 = 352 - 2.35.10 + 102
Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2.
Khi đó A = ( 35 - 10 )2 = 252.
Chọn đáp án A.
Bài 5: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?
A. x = 1. B. x = - 1.
C. x = 2. D. x = - 2.
Lời giải:
Ta có 2x2 - 4x + 2 = 0 ⇔ 2( x2 - 2x + 1 ) = 0 ( 1 )
Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2
Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0 ⇔ x - 1 = 0 ⇔ x = 1.
Chọn đáp án A.
Bài 6:
Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:
Ta được:
Chọn đáp án A
Bài 7: Điền vào chỗ chấm:
Lời giải:
Chọn đáp án C
Bài 8: Rút gọn biểu thức: A = (x – 2y).(x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
A. 2x3 B. -16y3
C. 16y3 D. –2x3
Lời giải:
Áp dụng hằng đẳng thức:
a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:
A = (x – 2y). (x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
A = x3 – (2y)3 - [x3 + (2y)3]
A = x3 – 8y3 – x3 – 8y3 = -16y3
Chọn đáp án B
Bài 9: Tìm x biết x2 – 16 + x(x – 4) = 0
A. x = 2 hoặc x = - 4.
B. x = 2 hoặc x = 4.
C. x = -2 hoặc x = - 4.
D. x = -2 hoặc x = 4.
Lời giải:
Ta có: x2 – 16 + x(x – 4) = 0
⇔ (x + 4). (x - 4) + x.(x – 4) = 0
⇔ (x + 4 + x).(x - 4) = 0
⇔ (2x + 4). (x - 4) = 0
⇔ 2x + 4 = 0 hoặc x – 4 = 0
* Nếu 2x + 4 = 0 thì x = -2
* Nếu x – 4 =0 thì x = 4
Vậy x = -2 hoặc x = 4.
Chọn đáp án D
Bài 10: Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
A. 2x2 + 4xy B. – 8y2 + 4xy
C. - 8y2 D. – 6y2 + 2xy
Lời giải:
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
A = -8y2 + 4xy
Chọn đáp án B
Bài 11: Chọn câu đúng
A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)
Lời giải
Ta có
(c + d)2 – (a + b)2 = (c + d + a + b)(c + d – (a + b)) = (c + d + a + b)(c + d – a – b) nên A sai
(c – d)2 – (a + b)2 = (c – d + a + b)[c – d – (a + b)] = (c – d + a + b)(c – d – a – b) nên B sai
(c – d)2 – (a – b)2 = (c – d + a – b)(c – d – (a – b)) = (c – d + a – b)(c – d – a + b) nên D sai
(a + b + c – d)(a + b – c + d) = [(a + b) + (c – d)][(a + b) – (c – d)] = (a + b)2 – (c – d)2 nên C đúng
Đáp án cần chọn là: C
Bài 12: Chọn câu đúng
A. 4 – (a + b)2 = (2 + a + b)(2 – a + b)
B. 4 – (a + b)2 = (4 + a + b)(4 – a – b)
C. 4 – (a + b)2 = (2 + a – b)(2 – a + b)
D. 4 – (a + b)2 = (2 + a + b)(2 – a – b)
Lời giải
Ta có 4 – (a + b)2 = 22 – (a + b)2 = (2 + a + b)[2 – (a + b)]
= (2 + a + b)(2 – a – b)
Đáp án cần chọn là: D
Bài 13: Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được
A. -15x + 1
B. 1
C. 15x + 1
D. – 1
Lời giải
Ta có A = (3x – 1)2 – 9x(x + 1)
= (3x)2 – 2.3x.1 + 1 – (9x.x + 9x)
= 9x2 – 6x + 1 – 9x2 – 9x
= -15x + 1
Đáp án cần chọn là: A
Bài 14: Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được2 + 4(x – 5)2 – 9(
A. 342
B. 243
C. 324
D. -324
Lời giải
Ta có A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4)
= 5(x2 + 2.x.4 + 16) + 4(x2 – 2.x.5 + 52) – 9(x2 – 42)
= 5(x2 + 8x + 16) + 4(x2 – 10x + 25) – 9(x2 – 42)
= 5x2 + 40x + 80 + 4x2 – 40x + 100 – 9x2 + 144
=
(5x2 + 4x2 – 9x2) + (40x – 40x) + (80 +100 + 144)
= 324
Đáp án cần chọn là: C
Bài 15: Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được
A. 0
B. 1
C. 19
D. – 19
Lời giải
Ta có B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7)
= 2a2 + 2a – 3a – 3 – (a2 – 8a + 16) – (a2 + 7a)
= 2a2 + 2a – 3a – 3 – a2 + 8a – 16 – a2 – 7a
= - 19
Đáp án cần chọn là: D
Bài 16: Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1). Chọn câu đúng.
A. B < 12
B. B > 13
C. 12 < B< 14
D. 11 < B < 13
Lời giải
Ta có B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1).
= (x2)2 +2.x2.4 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)
= x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12
Đáp án cần chọn là: D
Bài 17: Cho . Tìm mối quan hệ giữa C và D.
A. D = 14C + 1
B. D = 14C
C. D = 14C – 1
D. D = 14C – 2
Lời giải
Ta có:
Vậy D = 29; C = 2 suy ra D = 14C + 1 (do 29 = 14.2 + 1)
Đáp án cần chọn là: A
Bài 18: Cho M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12x và N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14).
Tìm mối quan hệ giữa M và N
A. 2N – M = 60
B. 2M – N = 60
C. M> 0, N < 0
D. M > 0, N > 0
Lời giải
Ta có
M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12
= 4(x2 + 2x + 1) + (4x2 + 4x + 1) – 8(x2 – 1) – 12x
= 4x2 + 8x + 4 + 4x2 + 4x + 1 – 8x2 +8 – 12x
= (4x2 + 4x2 – 8x2) + (8x + 4x – 12x) + 4 + 1 +8
= 13
N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)
= 2(x2 – 2x + 1) – 4(9 + 6x + x2) + 2x2 + 28x
= 2x2 – 4x + 2 – 36 – 24x – 4x2 + 2x2 + 28x
= (2x2 +2x2 – 4x2) + (-4x – 24x + 28x) + 2 – 36
= -34
Suy ra M = 13, N = -34 ⇔ 2M – N = 60
Đáp án cần chọn là: B
Bài 19: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0
A. 0
B. 1
C. 2
D. 3
Lời giải
Vậy có hai giá trị của x thỏa mãn yêu cầu
Đáp án cần chọn là: C
Bài 20: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0
A. 0
B. 1
C. 2
D. 3
Lời giải
Ta có:
Vậy có một giá trị của x thỏa mãn yêu cầu.
Đáp án cần chọn là: B
Xem thêm các dạng bài tập khác:
70 Bài tập về những hằng đẳng thức đáng nhớ (có đáp án năm 2023)
50 bài tập về những hằng đẳng thức đáng nhớ (có đáp án 2023)
50 Bài tập Căn thức bậc hai và hằng đẳng thức √ A 2 = | A | (có đáp án năm 2024)