Lý thuyết Toán 11 Bài 3: Đường thẳng và mặt phẳng song song(Chân trời sáng tạo)

Với tóm tắt lý thuyết Toán Toán 11 Bài 3: Đường thẳng và mặt phẳng song song sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11 Bài 3. Mời bạn đọc đón xem:

Lý thuyết Toán 11 Bài 3: Đường thẳng và mặt phẳng song song

I. Lý thuyết

1. Đường thẳng song song với mặt phẳng

Cho đường thẳng a và mặt phẳng (P). Khi đó có thể xảy ra một trong ba trường hợp sau:

• Trường hợp 1: a và (P) có từ hai điểm chung phân biệt trở lên, suy ra mọi điểm thuộc a đều thuộc (P), ta nói a nằm trong (P).

Kí hiệu: a  (P)

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

• Trường hợp 2: a và (P) có một điểm chung duy nhất A, ta nói a cắt (P) tại a.

Kí hiệu: a  (P) = A

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

• Trường hợp 3: a và (P) không có điểm chung nào, ta nói a song song với (P).

Kí hiệu: a // (P)

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Đường thẳng a song song với mặt phẳng (P) nếu chúng không có điểm chung.

Ví dụ: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD. Trên BD lấy điểm E bất kì. Qua E, kẻ đường thẳng song song với BC và cắt CD tại F. Xác định vị trí tương đối của mặt phẳng (BCD) lần lượt với các đường thẳng MN, EF và NF.

Hướng dẫn giải

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Xét tam giác ABD có M và N lần lượt là trung điểm của hai cạnh AB và AD

Suy ra MN là đường trung bình của tam giác ABD

Do đó MN // BD

Vậy MN và (BCD) không có điểm chung nào

Do đó MN // (BCD)

Ta có: E  EF và E (BCD)

Lại có: F  EF và F  (BCD)

Vậy EF và (BCD) có hai điểm chung phân biệt

Do đó EF  (BCD)

 NF và F  CD nên suy ra F = NF  CD

Do đó NF và (BCD) có một điểm chung duy nhất là F

Vậy suy ra NF  (BCD) = F.

2. Điều kiện để một đường thẳng song song với một mặt phẳng

Định lí 1: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nào đó nằm trong (P) thì a song song với (P).

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Ví dụ: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD. Chứng minh MN // (BCD)

Hướng dẫn giải

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Xét tam giác ABD có M và N lần lượt là trung điểm của hai cạnh AB và AD

Suy ra MN là đường trung bình của tam giác ABD

Do đó MN // BD

Mà BD  (BCD)

Vậy MN // (BCD).

3. Tính chất cơ bản của đường thẳng và mặt phẳng song song

Định lí 2: Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a, cắt (P) theo giao tuyến b thì a song song với b.

Ví dụ: Cho tứ diện ABCD. Gọi M là trung điểm của AB. Qua M kẻ đường thẳng song song với (BCD) và cắt AD tại điểm N. Chứng minh N là trung điểm của AD.

Hướng dẫn giải

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Ta có: MN // (BCD)

Lại có: (ABD)  MN và (ABD)  (BCD) = BD

Do đó MN // BD

Xét tam giác ABD có MN // BD mà M là trung điểm của AB

Vậy suy ra N là trung điểm của AD.

Hệ quả 1: Cho đường thẳng a song song với mặt phẳng (P). Nếu qua điểm M thuộc (P) ta vẽ được đường thẳng b song song với a thì b phải nằm trong (P).

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Hệ quả 2: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Định lí 3: Nếu a và b là hai đường thẳng chéo nhau thì qua a, có một và chỉ một mặt phẳng song song với b.

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

II. Bài tập Đường thẳng và mặt phẳng song song

Bài 1. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh AB. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua M, song song với BD và SA.

Hướng dẫn giải

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Qua M kẻ ME song song với BD, với E thuộc AD

Gọi O và I lần lượt là giao điểm của AC với BD và ME

Qua M kẻ MF song song với AS, với F thuộc SB

Qua E kẻ EG song song với AS, với G thuộc SD

Qua I kẻ IH song song với AS, với H thuộc SC

Khi đó ngũ giác MEGHF là thiết diện cần tìm.

Bài 2. Cho tứ diện ABCD. Gọi G và F lần lượt là trọng tâm của các tam giác ACD và BCD. Chứng minh rằng GF // (ABC) và GF // (ABD)

Hướng dẫn giải

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Gọi M là trung điểm của cạnh CD

G là trọng tâm của tam giác ACD nên ta có AGAM=23MGMA=13  (1)

Lại có F là trọng tâm của tam giác BCD nên suy ra BFBM=23MFMB=13  (2)

Từ (1) và (2) suy ra MGMA=MFMB=13

Xét tam giác MBA có MGMA=MFMB   nên theo định lí Ta-lét đảo ta có GF // AB

Mà AB  (ABC) nên suy ra GF // (ABC)

Tương tự AB  (ABD) nên suy ra GF // (ABD).

Bài 3. Cho tứ diện ABCD. Trên cạnh AB lấy một điểm M sao cho AMMB=13 . Trên cạnh AC lấy điểm N sao cho MN // (BCD). Tính tỉ số NCAN ?

Hướng dẫn giải

Đường thẳng và mặt phẳng song song (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Ta có:

AMMB=13AMAB=14

Do MN // (BCD) mà MN  (ABC)

Và với BC = (BCD)  (ABC) nên suy ra MN // BC

Xét tam giác ABC có MN // BC nên theo định lí Ta-lét ta có:

AMAB=ANAC=14NCAN=3.

Xem thêm các bài tóm tắt lý thuyết Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Lý thuyết Bài 2: Hai đường thẳng song song

Lý thuyết Bài 4: Hai mặt phẳng song song

Lý thuyết Bài 5: Phép chiếu song song

Tổng hợp lý thuyết Toán 11 Chương 4

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!