Lý thuyết Toán 11 Bài 1: Giới hạn của dãy số (Chân trời sáng tạo)

Với tóm tắt lý thuyết Toán Toán 11 Bài 1: Giới hạn của dãy số sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11 Bài 1. Mời bạn đọc đón xem:

Lý thuyết Toán 11 Bài 1: Giới hạn của dãy số

I. Lý thuyết

1. Giới hạn hữu hạn của dãy số

1.1. Giới hạn 0 của dãy số

Ta nói (un) có giới hạn 0 khi n dần tới dương vô cực, nếu |un| nhỏ hơn một số dương bé tùy ý cho trước, kể từ một số hạng nào đó trở đi.

Kí hiệu: limn+un=0  hay un0  khi n+

Ví dụ: Cho dãy số (un) với un=2n . Tìm giới hạn của dãy số.

Hướng dẫn giải

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Với n > 10 000   thì n>10000=100 .

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Suy ra limn+un=0 .

Một vài giới hạn đặc biệt:

• lim1nk=0 , với k nguyên dương bất kì.

• limqn=0 , với q là số thực thỏa mãn |q| < 1.

Ví dụ: Tìm các giới hạn sau:

a) lim1n3 ;

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Hướng dẫn giải

a) Do 3 là một số nguyên dương nên lim1n3=0 ;

b) Do |12|=12<1  nên lim12n=0.

1.2. Giới hạn hữu hạn của dãy số

Ta nói dãy số có giới hạn hữu hạn là số a (hay un dần tới a) khi n dần tới dương vô cực, nếu lim (un – a) = 0.

Kí hiệu: limn+un=a  hay lim un = a khi n → +∞.

Chú ý: Nếu un = c (c là hằng số) thì limun=limc=c

Ví dụ: Cho un=n+12+3n.  Chứng minh rằng limn+un=13 .

Hướng dẫn giải

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Theo định nghĩa, ta có limn+un=13 .

2. Các phép toán về giới hạn hữu hạn của dãy số

Cho lim un = a, lim vn = b và c là hằng số. Khi đó:

• lim (un + vn) = a + b                        

• lim (un – vn) = a – b

• lim (c.un) = c . a                               

• lim (un.un) = a . b

•  limunvn=ab (b0 )                         

• Nếu un0,n*  thì a0  và limun=a

Ví dụ: Tìm các giới hạn sau:

a)  lim4n+532n;                                   

b) lim4n2+32n .

Hướng dẫn giải

a) Ta có: 4n+532n=4+5n3n2

Từ đó: lim4n+532n=lim4+5n3n2=lim4+5nlim3n2

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

b) lim4n2+32n=lim4n2+34n2=lim1+34n2

=lim1+34n2=lim1+34lim1n2=1+34.0=1.

3. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân vô hạn (un) có công bội q thõa mãn |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Cấp số nhân lùi vô hạn nàu có tổng là:

S=u1+u2+...+un+...=u11q.

Ví dụ: Tính tổng của cấp số nhân lùi vô hạn: Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

 

Hướng dẫn giải

Ta có dãy số Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo là một cấp số nhân lùi vô hạn với số hạng đầu là u1=1 và công bội q=13  nên

 

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

4. Giới hạn vô cực

• Ta nói dãy số (uncó giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Kí hiệu: lim un = + ∞ hay un → +∞ khi n → +∞.

• Dãy số (uncó giới hạn là −∞ khi n → +∞, nếu lim un = + ∞.

Kí hiệu: lim un = − ∞ hay un → −∞ khi n → +∞.

Chú ý:

• lim un = + ∞ ⇔ lim (−un) = − ∞;

• Nếu lim un = + ∞ hoặc lim un = − ∞ thì lim1un=0 ;

• Nếu lim un = 0 và un > 0 với mọi n thì lim1un=+ .

Ví dụ: Tìm giới hạn lim2n .

Hướng dẫn giải

Từ 2 > 1 suy ra 0<12<1

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Mà 2n > 0 với mọi n nên lim 2= + ∞.

Nhận xét:

• limnk=+k,k1 ;

• limqn=+q>1 .

II. Bài tập Giới hạn của dãy số

Bài 1. Tính các giới hạn sau:

a) lim2n+6n3 ;

b) limn3n+312n3 ;

c) lim3n4n+23.4n5.2n .

Hướng dẫn giải

a) lim2n+6n3=lim2+6n13n=2 ;

b) limn3n+312n3=lim1nn3+3n31n32=lim11n2+3n31n32=12 ;

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Bài 2. Tìm số hạng tổng quát của cấp số nhân lùi vô hạn có công bội là -35  và tính tổng của cấp số nhân lùi vô hạn.

Hướng dẫn giải

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Suy ra số hạng đầu tiên của dãy là: u1 = 1.

Khi đó tổng cấp số nhân lùi vô hạn là: 

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Vậy số hạng tổng quát của cấp số nhân lùi vô hạn là: Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo  và tổng của cấp số nhân lùi vô hạn là S=58 .

Bài 3. Tính các giới hạn sau:

a) lim2n3+n24n13 ;

b) lim4.2n2.3n+13n .

Hướng dẫn giải

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Giới hạn của dãy số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Xem thêm các bài tóm tắt lý thuyết Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 3: Cấp số nhân

Tổng hợp lý thuyết Toán 11 Chương 2

Lý thuyết Bài 2: Giới hạn của hàm số

Lý thuyết Bài 3: Hàm số liên tục

Tổng hợp lý thuyết Toán 11 Chương 3

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!