Trắc nghiệm Toán 10 KNTT Bài ôn tập cuối chương 7 (Vận dụng) có đáp án
-
255 lượt thi
-
5 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Trong hệ trục toạ độ Oxy cho hai điểm A(−2; 2); B(4; –6) và đường thẳng d : . Tìm điểm M thuộc d sao cho M cách đều hai điểm A, B
Hướng dẫn giải
Đáp án đúng là: B
Do M ∈ d nên M(t; 1 + 2t)
Theo giả thiết M cách đều hai điểm A, B nên MA = MB
⇔ =
⇔ =
⇔ t2 + 4t + 4 + 4t2 – 4t + 1 = t2 – 8t + 16 + 4t2 + 28t + 49
⇔ 5t +15 = 0
⇔ t = −3
Với t = −3 thì M(−3; −5).
Câu 2:
Trong mặt phẳng Oxy cho điểm A(2; 3) và hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Gọi B(x1; y1) ∈ d1, C(x2; y2) ∈ d2 sao cho tam giác ABC nhận điểm G(2; 0) là trọng tâm. Tính giá trị biểu thức: T = x1x2 + y1y2.
Hướng dẫn giải
Đáp án đúng là: B
Vì B(x1; y1) ∈ d1 ⇒ B(– 5 – y1; y1)
Tương tự ta có: C( 7 – 2y2; y2)
Vì tam giác ABC nhận điểm G(2; 0) là trọng tâm nên
⇒
⇔
⇒
⇒
Vậy T = (− 1).5 + (−4).1= −9.
Câu 3:
Cho elip (E) : 9x2 + 16y2 = 144 . Với M là điểm thuộc elip biết = 60°. Tính MF1.MF2
Hướng dẫn giải
Đáp án đúng là: D
Ta có: 9x2 + 16y2 = 144 ⇔ . Khi đó: a = 4; b = 3; c = .
⇒ F1 (−;0); F2 (; 0); F1F2 = 2c = 2; MF1 + MF2 = 8
Áp dụng định lí cosin trong tam giác MF1F2 ta có:
F1F22 = MF12 + MF22 − 2MF1. MF2. cos
⇔ 28 = MF12 + MF22 − 2MF1. MF2. cos60º
⇔ 28 = MF12 + MF22 − MF1. MF2
⇔ MF12 + MF22 + 2MF1. MF2 − 3MF1. MF2 = 28
⇔ (MF1 + MF2)2 − 3MF1. MF2 = 28
⇔ 64 − 3MF1. MF2 = 28
⇔ MF1. MF2 = 12.
Câu 4:
Cho ba đường thẳng d1: 2x + y – 1 = 0, d2 : x + 2y + 1 = 0; d3: mx – y – 7 = 0. Tìm giá trị của tham số m để 3 đường thẳng trên đồng quy.
Hướng dẫn giải
Đáp án đúng là: C
Gọi A là giao điểm của đường thẳng d1 và d2 nên toạ độ điểm A thoả mãn:
⇒ A(1; –1)
Ba đường thẳng đã cho đồng quy khi và chỉ khi d3 cũng đi qua điểm A hay A ∈ d3
⇒ m.1 – (–1) – 7 = 0
⇔ m = 6.
Vậy với m = 6 thì ba đường thẳng đã cho đồng quy.
Câu 5:
Cho phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng ∆: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng 5
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của (P) có dạng: y2 = 2px (p > 0)
Vì (P) có đường chuẩn ∆ : x + 4 = 0 hay x = −4 ⇒ ⇔ p = 8
Do đó phương trình chính tắc của (P) là: y2 = 16x
Gọi M(x0; y0). Vì M thuộc (P) nên ta có:
d(M; ∆) = MF = 5
⇔
⇔
⇔
⇔
Với x0 = – 9 ta có: y02 = 16 .(– 9) = – 144 (vô lí)
Với x0 = 1 ta có: y02 = 16.1 = 16 ⇔
Vậy M (1; 4) hoặc M(1; – 4).