Trắc nghiệm Toán 10 KNTT Bài 21. Đường tròn mặt phẳng toạ độ (Phần 2) có đáp án

Trắc nghiệm Toán 10 KNTT Bài 21. Đường tròn mặt phẳng toạ độ (Vận dụng) có đáp án

  • 347 lượt thi

  • 5 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Phương trình đường tròn đi qua ba điểm M(-2; 4); N(5; 5); P(6; -2) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Gọi phương trình đường tròn (C) có dạng : x2 + y2 – 2ax – 2by + c = 0

Vì đường tròn (C) đi qua 3 điểm M; N; P nên ta có hệ phương trình:

4+16+4a8b+c=025+2510a10b+c=036+412a+4b+c=0    4a8b+c=2010a10b+c=5012a+4b+c=40 a=2b=1c=20

Vậy phương trình đường tròn (C) là: x2 + y2 – 4x – 2y – 20 = 0


Câu 2:

Cho tam giác ABC có A(1; 1), B(1; – 3), C(– 5; 9). Bán kính đường tròn nội tiếp tam giác ABC gần với giá trị:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Gọi M và N lần lượt là trung điểm của BC và AB.

Khi đó M( – 2; 3) và N(1; – 1).

Ta có: AC= (– 6; 8)

Phương trình đường trung trực của đoạn thẳng AC nhận nAC= (3; – 4) làm vectơ pháp tuyến và đi qua N( 1; – 1) là: 3(x – 1) – 4(y + 1) = 0 3x – 4y – 7 = 0.

Ta có: BC=6;12

Phương trình đường trung trực của đoạn thẳng BC nhận nBC= (1; – 2) làm vectơ pháp tuyến và đi qua M( – 2; 3) là: x + 2 – 2(y – 3) = 0 ⇔ x – 2y + 8 = 0.

Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Do đó I là giao điểm của các đường trung trực nên tọa độ điểm I là nghiệm của hệ phương trình:

x2y=83x4y=7x=23y=312I23;312 

IA= (– 22; 292) ⇒ IA = 222+2922=2777426.


Câu 3:

Cho đường thẳng d: 2x – y – 5 = 0 và hai điểm A(1; 2) và B(4; 1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A, B

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Gọi M là trung điểm của AB nên M52;32

Đường trung trực (∆) của đoạn thẳng AB đi qua tâm I của đường tròn

Mặt khác ta có: ∆ đi qua điểm M và nhận vectơ AB= (3; – 1) làm vectơ pháp tuyến nên có phương trình là:

3(x – 52) – (y – 32) = 0 3x – y – 6 = 0

Vì I = (∆) ∩ (d) nên toạ độ điểm I thoả mãn hệ 2xy5=03xy6=0x=1y=3  

I(1; -3)

Bán kính R = IA = (11)2+(3+2)2= 5.

Vậy phương trình đường tròn (C) là: (x – 1)2 + (y + 3)2 = 25.


Câu 4:

Viết phương trình tiếp tuyến ∆ của đường tròn (C) : x2 + y2 – 2x + 4y + 4 = 0 . Biết rằng tiếp tuyến vuông góc với đường thẳng x + 2y + 5 = 0

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Đường tròn (C) có tâm I(1; −2) và bán kính R = 1

Đường thẳng x + 2y + 5 = 0 có vectơ pháp tuyến là n1(1;2)

Theo giả thiết ta có: đường thẳng ∆ vuông góc với đường thẳng x + 2y + 5 = 0 nên đường thẳng ∆ nhận n1 làm vectơ chỉ phương. Do đó vectơ pháp tuyến của đường thẳng ∆ là nΔ(2;1).

Phương trình đường thẳng ∆ có dạng 2x – y + m = 0

Vì ∆ là tiếp tuyến của (C) nên d(I; ∆) = R

2+2+m12+22 = 1

4+m=5 

4+m=54+m=5 

 m=54m=54

+ Với m = 54 thì phương trình của ∆ là: 2x – y + 54 = 0

+ Với m = -54 thì phương trình của ∆ là: 2x – y -54 = 0


Câu 5:

Trong hệ toạ độ Oxy, cho ba đường thẳng d: x − 6y − 10 = 0; d1 : 3x + 4y + 5 = 0 và d2 : 4x – 3y – 5 = 0. Phương trình đường tròn (C) có tâm thuộc d ; và tiếp xúc với 2 đường thẳng d1 và d2 là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Gọi I là tâm của đường tròn (C)

Vì I d nên I(6t + 10; t)

Theo giả thiết ta có: d (I; d1) = d (I; d2) = R

              3.(6t+10)+4t+532+42 4.(6t+10)3t542+(3)2

                22t+35=21t+35

                  22t+35=21t+3522t+35=21t35

              22t21t=353522t+21t=3535 

              t=0t=7043 

+ Với t = 0 thì I (10; 0) và R = 7.

Do đó phương trình đường tròn (C) là: (x − 10)2 + y2 = 49

+ Với t = 7043 thì I1043;7043 và R = 743 .

Do đó phương trình đường tròn (C) là: x10432+y+70432=7432.


Bắt đầu thi ngay