Trắc nghiệm Toán 10 CTST Bài 1. Bất phương trình bậc nhất hai ẩn có đáp án (Phần 2)
Trắc nghiệm Toán 10 CTST Bài 1. Bất phương trình bậc nhất hai ẩn có đáp án (Nhận biết)
-
222 lượt thi
-
7 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Trong các bất phương trình sau, đâu là bất phương trình bậc nhất hai ẩn?
Hướng dẫn giải
Đáp án đúng là: C
Bất phương trình 2x2 + x + 1 < 0 chứa x2 nên không phải là bất phương trình bậc nhất hai ẩn;
Bất phương trình x – 5y2 + 1 > 0 chứa y2 nên không phải là bất phương trình bậc nhất hai ẩn;
Bất phương trình x + 1 > 0 là bất phương trình bậc nhất hai ẩn dạng ax + by + c < 0 với a = 1, b = 0, c = 1.
Bất phương trình 2y2 + 2 < 0 chứa y2 nên không phải là bất phương trình bậc nhất hai ẩn;
Vậy ta chọn phương án C.
Câu 2:
Hướng dẫn giải
Đáp án đúng là: C
Bất phương trình 2x + y ≤ 0 là bất phương trình bậc nhất hai ẩn dạng ax + by + c ≤ 0 với a = 2, b = 1, c = 0.
Bất phương trình x2 + 2 > 0 không phải là bất phương trình bậc nhất hai ẩn vì chứa x2 không phải bậc nhất.
Bất phương trình 2x + 1 > 0 là bất phương trình bậc nhất hai ẩn dạng ax + by + c > 0 với a = 2, b = 0, c = 1.
Bất phương trình 1 + y < 0 là bất phương trình bậc nhất hai ẩn dạng ax + by + c < 0 với a = 0, b = 1, c = 1.
Do đó có 3 bất phương trình bậc nhất hai ẩn.
Vậy ta chọn phương án C.
Câu 3:
Hướng dẫn giải
Đáp án đúng là: B
Xét cặp số (5; 2) ta có: 2.5 + 5.2 – 7 = 13 > 0 nên (5; 2) không phải là nghiệm của bất phương trình đã cho.
Xét cặp số (–5; 2) ta có: 2.(–5) + 5.2 – 7 = –7 < 0 nên (–5; 2) là nghiệm của bất phương trình đã cho.
Xét cặp số (2; 5) ta có: 2.2 + 5.5 – 7 = 22 > 0 nên (2; 5) không phải là nghiệm của bất phương trình đã cho.
Xét cặp số (–2; 5) ta có: 2.(–2) + 5.5 – 7 = 14 > 0 nên (–2; 5) không phải là nghiệm của bất phương trình đã cho.
Vậy ta chọn phương án B.
Câu 4:
Hướng dẫn giải
Đáp án đúng là: B
Xét cặp số (–5; 0) ta có: –5 – 4.0 + 5 = 0 nên (–5; 0) là một nghiệm của bất phương trình đã cho.
Xét cặp số (–2; 1) ta có: –2 – 4.1 + 5 = –1 < 0 nên (–2; 1) không là nghiệm của bất phương trình đã cho.
Xét cặp số (0; 0) ta có: 0 – 4.0 + 5 > 0 nên (0; 0) là một nghiệm của bất phương trình đã cho.
Xét cặp số (1; –3) ta có: 0 – 4.(–3) + 5 = 17 > 0 nên (1; –3) là một nghiệm của bất phương trình đã cho.
Vậy ta chọn phương án B.
Câu 5:
Cặp số (1; 2) là một nghiệm của bất phương trình nào sau đây?
Hướng dẫn giải
Đáp án đúng là: B
Xét phương án A: Ta có 2.1 – 3.2 – 1 = –5 < 0 nên cặp số (1; 2) không là nghiệm của bất phương trình 2x – 3y – 1 > 0.
Xét phương án B: Ta có 1 – 2 = –1 < 0 nên (1; 2) là một nghiệm của bất phương trình x – y < 0.
Xét phương án C: Ta có 4.1 – 3.2 = –2 < 0 nên cặp số (1; 2) không là nghiệm của bất phương trình 4x – 3y > 0.
Xét phương án D: Ta có 1 – 3.2 + 7 = 2 > 0 nên cặp số (1; 2) không là nghiệm của bất phương trình x – 3y + 7 < 0.
Vậy ta chọn phương án B.
Câu 6:
Hướng dẫn giải
Đáp án đúng là: C
Trên mặt phẳng Oxy, đường thẳng (d): x + y – 1 = 0 chia mặt phẳng Oxy thành hai nửa mặt phẳng.
Ta thấy O(0;0) ∉ (d) và 1 + 0 – 1 = –1 ≤ 0 nên (0; 0) là nghiệm của bất phương trình đã cho.
Do đó miền nghiệm của bất phương trình là nửa mặt phẳng bờ (d) (kể cả bờ (d)) chứa điểm O(0;0).
Xét cặp số (10; 0) ta có: 10 + 0 – 1 = 9 > 0 nên cặp số (10; 0) không là nghiệm của bất phương trình đã cho.
Vậy bất phương trình đã cho luôn có vô số nghiệm nhưng không phải là ℝ.
Ta chọn phương án C.
Câu 7:
Hướng dẫn giải
Đáp án đúng là: C
Ta có x + y ≤ 5 Û x + y – 5 ≤ 0.
Trên mặt phẳng Oxy, đường thẳng d: x + y + 5 = 0 chia mặt phẳng thành hai nửa mặt phẳng.
Ta thấy điểm O(0; 0) ∉ d và 0 + 0 – 5 = –5 < 0 do đó (0; 0) là một nghiệm của bất phương trình (1).
Vậy miền nghiệm của (1) là nửa mặt phẳng bờ d (kể cả bờ d) chứa điểm O(0; 0).
Ta chọn phương án C.