Trắc nghiệm Cấp số cộng có đáp án (Vận dụng)

Trắc nghiệm Cấp số cộng có đáp án (Vận dụng)

  • 89 lượt thi

  • 10 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 3:

Cho cấp số cộng có tổng của 4 số hạng liên tiếp bằng 22, tổng bình phương của chúng bằng 166. Bốn số hạng của cấp số cộng này là:

Xem đáp án

Đáp án A

Gọi 4 số hạng liên tiếp của CSC là

=> 4 số cần tìm là 10,7,4,1.


Câu 4:

Độ dài 3 cạnh của một tam giác vuông lập thành một cấp số cộng. Nếu trung bình cộng ba cạnh bằng 6 thì công sai của cấp số cộng này là:

Xem đáp án

Đáp án D

Gọi 3 cạnh của tam giác vuông là a, b, c (a < b < c). Khi đó ta có hệ phương trình:

d=ba=692=32=1,5


Câu 5:

Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

Xem đáp án

Đáp án C

Ba cạnh a, b, c (a < b < c) của một tam giác theo thứ tự đó lập thành một cấp số cộng thỏa mãn yêu cầu thì


Câu 8:

Người ta trồng 3003 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây,...Hỏi có tất cả bao nhiêu hàng cây?

Xem đáp án

Đáp án C

Số cây mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng un có u1=1,d=1

Giả sử có n hàng cây thì tổng số cây trong n hang là:


Câu 9:

Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng: x33mx2+2m(m4)x+9m2m=0?

Xem đáp án

Đáp án D

Giả sử phương trình có ba nghiệm phân biệt x1;x2;x3 lập thành một cấp số cộng. Theo định lí Vi-et ta có:

Dễ thấy −2,1,4 lập thành 1 cấp số cộng có d = 3

Vậy m = 1 thỏa mãn yêu cầu bài toán.


Câu 10:

Biết rằng tồn tại đúng hai giá trị của tham số m để phương trình x42(m+1)x2+2m+1=0 có bốn nghiệm phân biệt lập thành một cấp số cộng, tính tổng bình phương của hai giá trị đó.

Xem đáp án

Đáp án A

Ta có phương trình đã cho có 4 nghiệm phân biệt lập thành một cấp số cộng thì điều kiện cần là


Bắt đầu thi ngay