Giải SBT Toán 6 (Kết nối tri thức) Bài 10: Số nguyên tố

Với giải sách bài tập Toán 6 Bài 10: Số nguyên tố sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 6 Bài 10. Mời các bạn đón xem:

Sách bài tập Toán 6 Bài 1: Bài 10: Số nguyên tố

Bài 2.23 trang 36 sách bài tập Toán lớp 6 Tập 1: Hãy phân tích các số A, B sau đây ra thừa số nguyên tố

A = 62.93;   B = 3.82.25

Lời giải:

+) A = 62.93

Hãy phân tích các số A, B sau đây ra thừa số nguyên tố: A = 6^2.9^3

B = 3.82.25

Hãy phân tích các số A, B sau đây ra thừa số nguyên tố: A = 6^2.9^3

Vậy A = 22.38 và B = 26.3.52.

Bài 2.24 trang 36 sách bài tập Toán lớp 6 Tập 1: Hãy phân tích các số sau ra thừa số nguyên tố:

145; 310; 2 020.

Lời giải:

+)

Hãy phân tích các số sau ra thừa số nguyên tố: 145; 310; 2 020

Vậy 145 = 5. 29

+)

Hãy phân tích các số sau ra thừa số nguyên tố: 145; 310; 2 020

Vậy 310 = 2. 5. 31 

+)

Hãy phân tích các số sau ra thừa số nguyên tố: 145; 310; 2 020

Vậy 2 020 = 22.5.101

Bài 2.25 trang 36 sách bài tập Toán lớp 6 Tập 1: Tìm chữ số a để:

a) Tìm chữ số a để: a) 49a là số nguyên tố là số nguyên tố;

b) Tìm chữ số a để: a) 49a là số nguyên tố là hợp số.

Lời giải:

Tìm chữ số a để: a) 49a là số nguyên tố

a) Từ bảng trên, ta có số 491, 499 là các số nguyên tố

Do đó để Tìm chữ số a để: a) 49a là số nguyên tố là số nguyên tố thì a = 1 hoặc a = 9.

Vậy a = 1 hoặc a = 9.

b)

Ta có các số 233; 239 là số nguyên tố.

Do đó để Tìm chữ số a để: a) 49a là số nguyên tố là hợp số thì a ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9};

Vậy a ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

Bài 2.26 trang 36 sách bài tập Toán lớp 6 Tập 1: Kiểm tra xem trong các số sau, số nào là số nguyên tố, số nào là hợp số bằng cách dùng dấu hiệu chia hết hoặc tra bảng số nguyên tố:

829; 971; 9 891; 12 344; 32 015.

Lời giải:

Tra bảng nguyên tố ta thấy 829 và 971 là số nguyên tố

Theo dấu hiệu chia hết cho 2; 3; 5 ta có 9 891 ⁝ 3; 12 344 ⁝ 2; 32 015 ⁝ 5 nên 9 891; 12 344; 32 015 là hợp số.

Bài 2.27 trang 36 sách bài tập Toán lớp 6 Tập 1: Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ cột sau đây:

a)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

b)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Lời giải:

a)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

b) 

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Bài 2.28 trang 36 sách bài tập Toán lớp 6 Tập 1: Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ cây sau đây:

a) 

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

b)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Lời giải:

a)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Gọi các số còn thiếu là a, b, c, d như trên hình.

+) d = 2. 3 = 6

+) c = d. 7 = 6. 7 = 42

+) b = 5. 7 = 35

+) a = b. c = 35. 42 = 1 470

Vậy ta được hình sau:

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

b) 

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Gọi các số còn thiếu là a, b, c, d, e như trên hình.

+) 21 = e. 7   e = 21: 7 = 3

+) c = 3. 21 = 63

+) d = 2. 5 = 10

+) b = d. 7 = 10. 7 = 70

+) a = b. c = 70. 63 = 4 410

Vậy ta được hình sau:

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Bài 2.29 trang 37 sách bài tập Toán lớp 6 Tập 1: Số 2 021 có thể viết thành tổng của hai số nguyên tố được không? Vì sao?

Lời giải:

Ta có: 2 021 = 2 + 2 019

Vì 2 019 có tổng các chữ số là 2 + 0 + 1 + 9 = 12 ⁝ 3 nên 2 019 ⁝ 3 vì thế 2 019 không phải là số nguyên tố.

Ngoài số 2 là số chẵn nguyên tố duy nhất, các số nguyên tố khác hai đều là số lẻ.

Do vậy tổng của hai số nguyên tố khác 2 là một số chẵn

Mà 2 021 là số lẻ

Vậy 2 021 không thể viết thành tổng của hai số nguyên tố được.

Bài 2.30 trang 37 sách bài tập Toán lớp 6 Tập 1: Cho 6 hình vuông đơn vị, ta có hai cách xếp chúng để tạo thành các hình chữ nhật như hình dưới đây:

Cho 6 hình vuông đơn vị, ta có hai cách xếp chúng để tạo thành các hình

a) Nếu cho 7 hình vuông đơn vị thì ta có mấy cách xếp chúng thành các hình chữ nhật?

b) Nếu cho 12 hình vuông đơn vị thì ta có mấy cách xếp chúng thành các hình chữ nhật?

c) Cho n hình vuông đơn vị (n > 1). Với những số n nào thì ta chỉ có một cách xếp chúng thành hình chữ nhật? Với những số n nào thì ta có nhiều hơn một cách xếp chúng thành hình chữ nhật?

Lời giải:

Ở ví dụ chúng ta nhận thấy có 6 hình vuông đơn vị, ta có 2 cách xếp chúng

Vì thế mà số hình vuông đơn vị bằng diện tích của hình chữ nhật khi đã xếp xong

Hay chính là ta đi phân tích 6 thành tích của chiều dài và chiều rộng

Ta có: 6 = 6. 1 = 3. 2

Vậy ta xếp 1 hàng 6 hình vuông đơn vị hoặc 2 hàng mỗi hàng có 3 hình vuông đơn vị

a) Ta có 7 = 7. 1

Do vậy ta có 1 cách xếp chúng thành hình chữ nhật.

Vậy ta xếp 1 hàng 7 hình vuông đơn vị

Cho 6 hình vuông đơn vị, ta có hai cách xếp chúng để tạo thành các hình

b) Ta có 12 = 12. 1 = 6. 2 = 4. 3

Do vậy ta có 3 cách xếp chúng thành hình chữ nhật.

Vậy ta xếp 1 hàng 12 hình vuông đơn vị; 2 hàng mỗi hàng có 6 hình vuông đơn vị hoặc 3 hàng có 4 hình vuông đơn vị.

Cho 6 hình vuông đơn vị, ta có hai cách xếp chúng để tạo thành các hình

c) Với n hình vuông đơn vị (n > 1) ta chỉ có một cách xếp chúng thành hình chữ nhật khi n là số nguyên tố

Lúc đó: n = n. 1 

Vậy ta xếp 1 hàng n hình vuông đơn vị.

+) Với n là hợp số thì n có nhiều hơn 1 cách phân tích thành tích của các số nên có nhiều hơn 1 cách sắp xếp chúng thành hình chữ nhật.

Bài 2.31 trang 37 sách bài tập Toán lớp 6 Tập 1: Tổng sau là số nguyên tố hay hợp số?

a) 11. 12. 13 + 14. 15;

b) 11. 13. 15 + 17. 19. 23

Lời giải:

a) Vì 12 ⁝ 3 nên (11. 12. 13) ⁝ 3

         15 ⁝ 3 nên (14. 15) ⁝ 3

Do đó (11. 12. 13 + 14. 15) ⁝ 3 (áp dụng tính chất chia hết của một tổng)

Vậy (11. 12. 13 + 14. 15) là hợp số.

b) Ta thấy: 11. 13. 15 là tích của 3 số lẻ nên là số lẻ

                   17. 19. 23 là tích của 3 số lẻ nên là số lẻ

Do đó (11. 13. 15 + 17. 19. 23) là số chẵn

Mặt khác (11. 13. 15 + 17. 19. 23) lớn hơn 2 nên (11. 13. 15 + 17. 19. 23) là hợp số.

Vậy (11. 13. 15 + 17. 19. 23) là hợp số.

Bài 2.32 trang 37 sách bài tập Toán lớp 6 Tập 1:a) Năm 1742, nhà toán học người Đức Goldbach gửi cho nhà toán học Thụy Sĩ Euler một bức thư viết rằng: Mọi số tự nhiên lớn hơn 5 đều viết được thành tổng của ba số nguyên tố, ví dụ 7 = 2 + 2 + 3; 8 = 2 + 3 + 3.

Em hãy viết các số 17; 20 thành tổng của ba số nguyên tố.

b) Trong thư trả lời Goldbach, Euler nói rằng: Mọi số chẵn lớn hơn 2 đều viết được dưới dạng tổng của hai số nguyên tố.

Em hãy viết các số 36; 50 thành tổng của hai số nguyên tố.

Cả hai bài toán Goldbach và Euler nêu ra đến nay vẫn chưa có lời giải.

Lời giải:

a) Ta có: 17 = 3 + 7 + 7; 20 = 2 + 7 + 11

b) Ta có: 36 = 17 + 19; 50 = 13 + 37.

Xem thêm các bài giải SBT Toán 6 Kết nối tri thức hay, chi tiết khác:

Bài 8: Quan hệ chia hết và tính chất

Bài 9: Dấu hiệu chia hết

Bài 11: Ước chung. Ước chung lớn nhất

Bài 12: Bội chung. Bội chung nhỏ nhất

Ôn tập chương 2 trang 45

Câu hỏi liên quan

Gọi các số còn thiếu là a, b, c, d như trên hình.
Xem thêm
a) Từ bảng trên, ta có số 491, 499 là các số nguyên tố
Xem thêm
Vậy 145 = 5. 29
Xem thêm
a) Vì 12 ⁝ 3 nên (11. 12. 13) ⁝ 3
Xem thêm
a) Ta có: 17 = 3 + 7 + 7; 20 = 2 + 7 + 11
Xem thêm
Ta có: 2 021 = 2 + 2 019
Xem thêm
+) A = 6^2.9^3
Xem thêm
Ở ví dụ chúng ta nhận thấy có 6 hình vuông đơn vị, ta có 2 cách xếp chúng
Xem thêm
Tra bảng nguyên tố ta thấy 829 và 971 là số nguyên tố
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Số nguyên tố (SBT KNTT)
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!