Giải Chuyên đề Toán 11 Bài 1 (Kết nối tri thức): Phép biến hình

1900.edu.vn xin giới thiệu giải Chuyên đề Toán 11 Bài 1: Phép biến hình sách Kết nối tri thức hay, chi tiết giúp học sinh xem và so sánh lời giải từ đó biết cách làm Chuyên đề học tập Toán 11. Mời các bạn đón xem:

Giải Chuyên đề Toán 11 Bài 1: Phép biến hình

1. Phép biến hình

HĐ1 trang 5 Chuyên đề Toán 11: Hoa và Hưng cùng chơi trò chơi sau: Hai bạn luân phiên nhau đặt các đồng xu có cùng kích thước lên trên một mặt mảnh giấy hình chữ nhật sao cho các xu nằm hoàn toàn trên mảnh giấy và xu đặt sau không chồng lên xu trước. Mỗi bạn, đến lượt mình được đặt một xu. Ai là người đầu tiên không còn chỗ để đặt xu là người thua cuộc. 

Trong một lần chơi, là người đặt xu trước, Hoa đặt đồng xu đầu tiên tại vị trí O ở chính giữa mảnh giấy, và sau đó, ở mỗi lượt đặt xu, nếu Hưng đặt đồng xu ở vị trí M thì Hoa đặt ở vị trí M' đối xứng với M qua O. Hỏi trong lần chơi nói trên, ai là người thắng cuộc? 

HĐ1 trang 5 Chuyên đề học tập Toán 11 Kết nối tri thức

 

Lời giải:

Ta đã biết với mỗi điểm M trong mặt phẳng thì có duy nhất một điểm M' đối xứng với M qua điểm O cho trước. Chính vì vậy, nếu Hưng đặt đồng xu ở vị trí M, Hoa đặt đồng xu ở ví trí M' đối xứng với M qua O (vị trí chính giữa tờ giấy mà Hoa đặt trước), thì mỗi lần Hưng đặt đồng xu tiếp sau, Hoa đều xác định được duy nhất một vị trí để đặt đồng xu của mình tương ứng, cứ như vậy, Hoa sẽ đặt được đồng xu lên vị trí cuối cùng còn trống của mảnh giấy, do đó Hưng sẽ là người đầu tiên không còn chỗ để đặt xu. Vậy Hưng là người thua cuộc và Hoa là người thắng cuộc. 

2. Ảnh của một hình qua một phép biến hình

HĐ2 trang 6 Chuyên đề Toán 11: Trên mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm M(x; y) thành điểm M'(x + 1; y + 2).

a) Xét các điểm A(– 1; 5), B(2; 2), C(4; 0) thuộc ∆: x + y – 4 = 0. Xác định các ảnh của chúng qua f.

b) Chứng minh rằng nếu M(x0; y0) là điểm thuộc đường thẳng ∆: x + y – 4 = 0 thì ảnh M'(x0 + 1; y0 + 2) của nó thuộc đường thẳng ∆': x+ y – 7 = 0.  

HĐ2 trang 6 Chuyên đề học tập Toán 11 Kết nối tri thức

Lời giải:

a) Ảnh của điểm A(– 1; 5) qua phép biến hình f là điểm A'(– 1 + 1; 5 + 2) hay A'(0; 7).

Ảnh của điểm B(2; 3) qua phép biến hình f là điểm B'(2 + 1; 3 + 2) hay B'(3; 5).

Ảnh của điểm C(4; 0) qua phép biến hình f là điểm C'(4 + 1; 0 + 2) hay C'(5; 2).

b) Vì M(x0; y­0) thuộc ∆: x + y – 4 = 0 nên x0 + y0 – 4 = 0 hay x0 + y= 4

⇔ x0 + y0 + 3 = 4 + 3

⇔ (x0 + 1) + (y+ 2) = 7

⇔ (x0 + 1) + (y+ 2) – 7 = 0

Suy ra M'(x0 + 1; y0 + 2) thuộc đường thẳng ∆': x + y – 7 = 0.

Vận dụng 1 trang 8 Chuyên đề Toán 11: Quan sát ba tấm ảnh hoa hồng ở Hình 1.4, hãy cho biết hình nào giống ảnh của hình ở giữa qua một phép co về trục.

Vận dụng 1 trang 8 Chuyên đề học tập Toán 11 Kết nối tri thức

Lời giải:

Quan sát Hình 1.4, ta thấy hình phía bên phải hình ở giữa giống ảnh của hình ở giữa qua một phép co về trục.

Bài tập

Bài 1.1 trang 8 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy cho điểm I(1; 2). Xét phép biến hình f biến điểm I thành điểm I và biến mỗi điểm M khác I thành điểm M' sao cho I là trung điểm của MM'. Tìm tọa độ ảnh của điểm A(3; – 2) qua phép biến hình f.

Lời giải:

Phép biến hình f biến điểm I thành chính nó và biến mỗi điểm M khác I thành điểm M' sao cho I là trung điểm của MM'.

Vì A(3; – 2) ≠ I(1; 2) nên phép biến hình f biến điểm A thành điểm A' sao cho I là trung điểm của AA'. Do đó xA'=2xIxA=2.13=1yA'=2yIyA=2.22=6.

Vậy ảnh của điểm A qua phép biến hình f là điểm A'(– 1; 6).

Bài 1.2 trang 8 Chuyên đề Toán 11: Trong bảng quan sát quy luật điền các cặp (A, A'), (B, B'), (C, C'), ..., từ đó điền các kí hiệu N', P', Q', R', S' vào các vị trí thích hợp.

Chuyên đề Toán 11 Bài 1 (Kết nối tri thức): Phép biến hình  (ảnh 1)

Lời giải:

Chuyên đề Toán 11 Bài 1 (Kết nối tri thức): Phép biến hình  (ảnh 1)

Xem thêm các bài giải Chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 2: Phép tịnh tiến

Bài 3: Phép đối xứng trục

Bài 4: Phép quay và phép đối xứng tâm

Bài 5: Phép dời hình

Bài 6: Phép vị tự

Câu hỏi liên quan

Phép biến hình f biến điểm I thành chính nó và biến mỗi điểm M khác I thành điểm M' sao cho I là trung điểm của MM'.
Xem thêm
a) Ảnh của điểm A(– 1; 5) qua phép biến hình f là điểm A'(– 1 + 1; 5 + 2) hay A'(0; 7).
Xem thêm
Ta đã biết với mỗi điểm M trong mặt phẳng thì có duy nhất một điểm M' đối xứng với M qua điểm O cho trước.
Xem thêm
Quan sát Hình 1.4, ta thấy hình phía bên phải hình ở giữa giống ảnh của hình ở giữa qua một phép co về trục.
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Phép biến hình - CĐ
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!