Xác định trung vị của mẫu số liệu ghép nhóm ở Bảng 1. Nhóm Tần số [0; 4) 13 [4; 8) 29 [8; 12) 48 [12; 16) 22 [16; 20) 8 n = 120 Bảng 1

Xác định trung vị của mẫu số liệu ghép nhóm ở Bảng 1.

Nhóm

Tần số

[0; 4)

13

[4; 8)

29

[8; 12)

48

[12; 16)

22

[16; 20)

8

 

n = 120

Bảng 1

Trả lời

Ta có bảng tần số tích lũy như sau:

Nhóm

Tần số

Tần số tích lũy

[0; 4)

13

13

[4; 8)

29

42

[8; 12)

48

90

[12; 16)

22

112

[16; 20)

8

120

 

n = 120

 

Số phần tử của mẫu là n = 120. Ta có n2=1202=60.

Mà 42 < 60 < 90 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 60.

Xét nhóm 3 là nhóm [8; 12) có r = 8, d = 4, n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.

Áp dụng công thức, ta có trung vị của mẫu số liệu đã cho là:

Me=8+6042484=9,5.

Câu hỏi cùng chủ đề

Xem tất cả