Câu hỏi:
01/04/2024 42Với , ta xét các mệnh đề:
P: “ + 5 chia hết cho 2”;
Q: “ + 5 chia hết cho 3” và
R: “ + 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 3
B. 0
C. 1
D. 2
Trả lời:
Đáp án A
Bằng quy nạp toán học ta chứng minh được + 5 chia hết cho 6.
Thật vậy, với ta có: + 5 =12 6
Giả sử mệnh đề đúng với n = k, nghĩa là + 5 chia hết cho 6, ta chứng minh mệnh đề cũng đúng với n = k + 1, nghĩa là phải chứng minh + 5 chia hết cho 6.
Ta có: + 5 = 7( + 5) − 30
Theo giả thiết quy nạp ta có + 5 chia hết cho 6, và 30 chia hết cho 6 nên 7( + 5) − 30 cũng chia hết cho 6.
Do đó mệnh đề đúng với n = k + 1.
Vậy + 5 chia hết cho 6 với mọi
Mọi số chia hết cho 6 đều chia hết cho 2 và chia hết cho 3.
Do đó cả 3 mệnh đề đều đúng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
Câu 3:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên), ta tiến hành hai bước:
Bước 1, kiểm tra mệnh đề P(n) đúng với n = p
Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ và phải chứng minh rằng nó cũng đúng với n = k + 1
Trong hai bước trên:
Câu 4:
Một học sinh chứng minh mệnh đề chia hết cho 7, như sau:
Giả sử (*) đúng với n = k tức là + 1 chia hết cho 7
Ta có: + 1 = 8 - 7, kết hợp với giả thiết + 1 chia hết cho 7 nên suy ra được + 1 chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi
Khẳng định nào sau đây là đúng?
Câu 6:
Dùng quy nạp chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề P(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Câu 9:
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k+1 thì ta cần chứng minh mệnh đề đúng với:
Câu 10:
Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho
a)
b)
Chọn mệnh đề đúng trong các mệnh đề sau.
Câu 13:
Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với n = k thì ta cần chứng minh mệnh đề đúng đến: