Câu hỏi:

01/04/2024 52

Một học sinh chứng minh mệnh đề ''8n+1 chia hết cho 7, nN*''(*) như sau:

Giả sử (*) đúng với n = k tức là 8k + 1 chia hết cho 7

Ta có: 8k+1 + 1 = 8(8k+1) - 7, kết hợp với giả thiết 8k + 1 chia hết cho 7 nên suy ra được 8k+1 + 1 chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi nN*

Khẳng định nào sau đây là đúng?

A. Học sinh trên chứng minh đúng.

B. Học sinh chứng minh sai vì không có giả thiết qui nạp.

C. Học sinh chứng minh sai vì không dùng giả thiết qui nạp.

D. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Quan sát lời giải trên ta thấy:

Học sinh thực hiện thiếu bước 1: Kiểm tra n = 1 thì 81 + 1 = 9 không chia hết cho 7 nên mệnh đề đó sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm số nguyên dương p nhỏ nhất để 2n>2n+1 với mọi số nguyên np

Xem đáp án » 01/04/2024 87

Câu 2:

Đối với bài toán chứng minh P(n) đúng với mọi np với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 01/04/2024 53

Câu 3:

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên np (p là một số tự nhiên), ta tiến hành hai bước:

Bước 1, kiểm tra mệnh đề P(n) đúng với n = p

Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng nó cũng đúng với n = k + 1

Trong hai bước trên:

Xem đáp án » 01/04/2024 51

Câu 4:

Với mỗi số nguyên dương n, đặt S=12+22+...+n2. Mệnh đề nào dưới đây là đúng

Xem đáp án » 01/04/2024 50

Câu 5:

Dùng quy nạp chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên np (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề P(n) đúng với n = k. Khẳng định nào sau đây là đúng?

Xem đáp án » 01/04/2024 48

Câu 6:

Với nN*, hãy rút gọn biểu thức S=1.4+2.7+3.10+...+n(3n+1)

Xem đáp án » 01/04/2024 45

Câu 7:

Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với n = k thì ta cần chứng minh mệnh đề đúng đến:

Xem đáp án » 01/04/2024 44

Câu 8:

Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k+1 thì ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 01/04/2024 43

Câu 9:

Kí hiệu k!=k(k1)...2.1,kN* đặt Sn=1.1!+2.2!+...+n.n!. Mệnh đề nào dưới đây là đúng?

Xem đáp án » 01/04/2024 43

Câu 10:

Tính tổng: 1.4 + 2.7 + … +n.(3n +1)

Xem đáp án » 01/04/2024 43

Câu 11:

Chứng minh n3+3n2+5n chia hết cho 3

Xem đáp án » 01/04/2024 42

Câu 12:

Với mọi số tự nhiên n2 bất đẳng thức nào sau đây đúng?

Xem đáp án » 01/04/2024 41

Câu 13:

Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho

a) kQ

b) nQn+1Qnk

Chọn mệnh đề đúng trong các mệnh đề sau.

Xem đáp án » 01/04/2024 40

Câu 14:

Với nN*, ta xét các mệnh đề:

P: “7n + 5 chia hết cho 2”;

Q: “7n + 5 chia hết cho 3” và

R: “7n + 5 chia hết cho 6”.

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 01/04/2024 38