Tính tổng T= 0 C2020/ 3- 1C2020/4+ 2C2020/5- 3C 2020/6 +....-2019C2020/2022
Tính tổng T=C020203−C120204+C220205−C320206+....−C201920202022+C202020202023.
Tính tổng T=C020203−C120204+C220205−C320206+....−C201920202022+C202020202023.
Chọn C
Ta có (1−x)2020=∑2020k=0Ck2020(−x)k
Xét hàm số:
f(x)=x2(1−x)2020=∑2020k=0Ck2020xk+2.(−1)k=C02020x2−C12020x3+C22020x4−C32020x5+...+C20192020x2021−C02020x2022
Là hàm số liên tục trên ℝ nên:
1∫0x2(1−x)2020dx=1∫0(C02020x2−C12020x3+C22020x4−C32020x5+...+C20192020x2021−C02020x2022)dx
Ta xét
VT=1∫0x2(1−x)2020dx (đặt u=1−x⇒x=1−u⇒dx=−du; đổi biến x=0⇒u=1; x=1⇒u=0)
=0∫1(1−u)2u2020(−du)=1∫0(u2020−2u2021+u2022)du=u20212021−2u20222022+u20232023|10=12021−22022+12023=14133456313
VP=1∫0(C02020x2−C12020x3+C22020x4−C32020x5+...−C20192020x2021+C02020x2022)dx=C02020.x33−C12020.x44+C22020.x55−C32020.x66+...−C20192020.x20222022+C20202020.x20232023|10=C020203−C120204+C220205−C320206+....−C201920202022+C202020202023.
VT=VP⇒C020203−C120204+C220205−C320206+....−C201920202022+C202020202023=14133456313.