Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16

Bài 2.42 trang 40 sách bài tập Toán lớp 6 Tập 1: Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16.

Trả lời

Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với 

ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*

Ta có a + b = 96 nên 16. m + 16. n = 96

                                      16. (m + n) = 96

                                               m + n = 96: 16

                                               m + n = 6

Ta có bảng sau:

m

1

2

3

4

5

n

5

4

3

2

1

ƯCLN(m, n) = 1

TM

KTM

KTM

KTM

TM

+) Với m = 1; n = 5 ta được a = 1. 16 = 16;  b = 5. 16 = 80

+) Với m = 5; n = 1, ta được a = 5. 16 = 80;  b = 1. 16 = 16

Vậy các cặp số (a; b) thỏa mãn là (16; 80); (80; 16)

Xem thêm các bài giải SBT Toán 6 Kết nối tri thức hay, chi tiết khác:

Bài 9: Dấu hiệu chia hết

Bài 10: Số nguyên tố

Bài 11: Ước chung. Ước chung lớn nhất

Bài 12: Bội chung. Bội chung nhỏ nhất

Ôn tập chương 2 trang 45

Bài 13: Tập hợp các số nguyên

Câu hỏi cùng chủ đề

Xem tất cả