Câu hỏi:
12/03/2024 48Tìm phân số bằng với phân số \[\frac{{200}}{{520}}\] mà có tổng của tử và mẫu bằng 306
A. \[\frac{{84}}{{222}}\]
B. \[\frac{{200}}{{520}}\]
C. \[\frac{{85}}{{221}}\]
D. \[\frac{{100}}{{260}}\]
Trả lời:
Ta có: \[\frac{{200}}{{520}} = \frac{5}{{13}}\]nên có dạng tổng quát là \[\frac{{5k}}{{13k}}\](k∈Z, k ≠ 0)
Do tổng và tử và mẫu của phân số cần tìm bằng 306 nên:
5k + 13k = 306
18k = 306
k = 306:18
k = 17
Vậy phân số cần tìm là\[\frac{{5.17}}{{13.17}} = \frac{{85}}{{221}}\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút gọn phân số \[\frac{{600}}{{800}}\] về dạng phân số tối giản ta được:
Câu 2:
Nhân cả tử số và mẫu số của phân số \[\frac{{14}}{{23}}\] với số nào để được phân số \[\frac{{168}}{{276}}\]?
Câu 4:
Sau khi rút gọn biểu thức \[\frac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\]ta được phân số \[\frac{a}{b}\]. Tính tổng a + b.
Câu 5:
Rút gọn phân số \[\frac{{4.8}}{{64.\left( { - 7} \right)}}\] ta được phân số tối giản là:
Câu 6:
Phân số nào sau đây là kết quả của biểu thức \[\frac{{2.9.52}}{{22.\left( { - 72} \right)}}\] sau khi rút gọn đến tối giản?
Câu 7:
Biểu thức \[\frac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}}\] sau khi đã rút gọn đến tối giản có mẫu số dương là:
Câu 8:
Hãy chọn phân số không bằng phân số \[\frac{{ - 8}}{9}\] trong các phân số dưới đây?
Câu 9:
Viết dạng tổng quát của các phân số bằng với phân số \[\frac{{ - 12}}{{40}}\]
Câu 10:
Tìm phân số tối giản \[\frac{a}{b}\] biết rằng lấy tử cộng với 6, lấy mẫu cộng với 14 thì ta được phân số bằng \[\frac{3}{7}\] .
Câu 11:
Cho các phân số \[\frac{6}{{n + 8}};\frac{7}{{n + 9}};\frac{8}{{n + 10}};...;\frac{{35}}{{n + 37}}\]. Tìm số tự nhiên n nhỏ nhất để các phân số trên tối giản.
Câu 12:
Rút gọn biểu thức \[A = \frac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\]