Câu hỏi:
05/03/2024 49Tìm giá trị lớn nhất của biểu thức : \[C = - {\left( {x - 5} \right)^2} + 10\]
A. −10
B. 5
C. 0
D. 10
Trả lời:
Trả lời:
\[C = - {\left( {x - 5} \right)^2} + 10\]
Ta có : \[{\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\]
\[ \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\]
Suy ra \[C \le 10\,\,\forall x \in \mathbb{Z}\]
\[C = 10\] khi \[{\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
Vậy giá trị lớn nhất của C là 10 khi \[x = 5\] .
Đáp án cần chọn là: D
Trả lời:
\[C = - {\left( {x - 5} \right)^2} + 10\]
Ta có : \[{\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\]
\[ \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\]
Suy ra \[C \le 10\,\,\forall x \in \mathbb{Z}\]
\[C = 10\] khi \[{\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
Vậy giá trị lớn nhất của C là 10 khi \[x = 5\] .
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Tính \[ - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\] ta được kết quả
Câu 7:
Cho \[A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\;\] . Chọn câu đúng.
Câu 8:
Bỏ ngoặc rồi tính: \[\left( {52 - 69 + 17} \right) - \left( {52 + 17} \right)\;\] ta được kết quả là
Câu 9:
Thực hiện phép tính \[455 - 5.\left[ {\left( { - 5} \right) + 4.\left( { - 8} \right)} \right]\;\] ta được kết quả là
Câu 10:
Cho x là số nguyên và \[x + 1\;\] là ước của 5 thì giá trị của x là:
Câu 12:
Cho \[E = \left\{ {3; - 8;0} \right\}\;\] . Tập hợp F gồm các phần tử của E và các số đối của chúng là?
Câu 13:
Cho \[x \in \mathbb{Z}\;\] và −5 là bội của \[x + 2\;\] thì giá trị của x bằng:
Câu 14:
Cho các số sau: 1280;−291;43;−52;28;1;0 . Các số đã cho sắp xếp theo thứ tự giảm dần là: