Câu hỏi:
01/02/2024 50Tìm đa thức bị chia biết đa thức chia là (x – 1), thương là (4x2 + 3x + 8) và dư 16.
A. 4x3 – x2 + 5x − 8;
B. 4x3 + x2 + 5x + 8;
C. 4x3 – x2 + 5x + 8;
D. 4x3 – x2 − 5x − 8.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có: Đa thức bị chia = Đa thức chia . Thương + Dư
Gọi Q(x) là đa thức bị chia cần tìm
Theo bài ta có:
Q(x) = (x – 1)(4x2 + 3x + 8) + 16
= x(4x2 + 3x + 8) – 1 . (4x2 + 3x + 8) + 16
= x . 4x2 + x . 3x + x . 8 − 4x2 − 3x – 8 + 16
= 4x3 + 3x2 + 8x − 4x2 − 3x – 8 + 16
= 4x3 + (3x2 − 4x2) + (8x − 3x) − 8+ 16
= 4x3 – x2 + 5x + 8.
Do đó đa thức bị chia cần tìm là: 4x3 – x2 + 5x + 8.
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Ta có: Đa thức bị chia = Đa thức chia . Thương + Dư
Gọi Q(x) là đa thức bị chia cần tìm
Theo bài ta có:
Q(x) = (x – 1)(4x2 + 3x + 8) + 16
= x(4x2 + 3x + 8) – 1 . (4x2 + 3x + 8) + 16
= x . 4x2 + x . 3x + x . 8 − 4x2 − 3x – 8 + 16
= 4x3 + 3x2 + 8x − 4x2 − 3x – 8 + 16
= 4x3 + (3x2 − 4x2) + (8x − 3x) − 8+ 16
= 4x3 – x2 + 5x + 8.
Do đó đa thức bị chia cần tìm là: 4x3 – x2 + 5x + 8.
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đa thức A(x) = (x3 – 8x2 + x – 8) : (x – 8).
Có bao nhiêu giá trị của x để A(x) = 0?
Câu 3:
Cho đa thức f(x) = (4x7 – x + 11x5 + 2x3 + x5 – 9x4) : (2x). Sắp xếp đa thức f(x) theo lũy thừa tăng dần ta được:
Câu 5:
Cho đa thức f(x) = (x4 – x3 + 10x2 – 9x + 9) : (x2 + 9). Giá trị của f(2) là:
Câu 6:
Tổng các hệ số của biến x trong đa thức A(x) = x(x2 – 5) + x2(x + 8) là: