Tác dụng một ngoại lực F = F0cos ( pi t)( N ) (t) tính bằng s vào một con lắc đơn có chiều dài l  = 50cm thì gây ra dao động cưỡng bức cho con lắc đơn. Lấy g = pi ^2 = 10m/s^2. Để tăng biên đ

Tác dụng một ngoại lực \(F = {F_0}\cos \left( {\pi t} \right)\left( N \right)\) (\(t\) tính bằng \(s\)) vào một con lắc đơn có chiều dài \(\ell = 50{\rm{\;cm}}\) thì gây ra dao động cưỡng bức cho con lắc đơn. Lấy \(g = {\pi ^2} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Để tăng biên độ dao động của con lắc đơn chúng ta có thể
A. giảm khối lượng của vật nặng
B. tăng khối lượng của vật nặng
C. giảm chiều dài con lắc đơn
D. tăng chiều dài con lắc đơn.

Trả lời
Hướng dẫn  
\({\omega _0} = \sqrt {\frac{g}{l}} = \sqrt {\frac{{10}}{{0,5}}} = 2\sqrt 5 \approx 4,47rad/s\) nên có thể tăng \(l\) để giảm \({\omega _0}\) về gần \(\pi \) rad/s
Theo định luật II Newton thì
\( - mg\alpha + F = - m{\omega ^2}s \Rightarrow - mg.\frac{s}{l} + {F_0}\cos \left( {\pi t} \right) = - m.{\pi ^2}s \Rightarrow s = \frac{{{F_0}}}{{m\left( {\frac{g}{l} - {\pi ^2}} \right)}}.\cos \left( {\pi t} \right)\)
\( \Rightarrow \) để tăng biên độ \[{s_0} = \frac{{{F_0}}}{{m\left| {\frac{g}{l} - {\pi ^2}} \right|}}\] thì cũng có thể giảm khối lượng m của vật nặng
Chọn A và D

Câu hỏi cùng chủ đề

Xem tất cả