Nhận biết tiếp tuyến của đồ thị hàm số Cho hàm số y = f(x) có đồ thị (C) và P(x0; f(x0)) ∈ (C). Xét điểm Q(x; f(x)) thay đổi trên (C) với x ≠ x0. a) Đường thẳng đi qua hai điểm P, Q được g

Nhận biết tiếp tuyến của đồ thị hàm số

Nhận biết tiếp tuyến của đồ thị hàm số   Cho hàm số y = f(x) có đồ thị (C) và P(x0; f(x0)) ∈ (C). Xét điểm Q(x; f(x)) thay đổi trên (C) với x ≠ x0.  a) Đường thẳng đi qua hai điểm P, Q được gọi là một cát tuyến của đồ thị (C) (H.9.3). Tìm hệ số góc kPQ của cát tuyến PQ.  (ảnh 1)

 

Cho hàm số y = f(x) có đồ thị (C) và P(x0; f(x0)) (C). Xét điểm Q(x; f(x)) thay đổi trên (C) với x ≠ x0.

a) Đường thẳng đi qua hai điểm P, Q được gọi là một cát tuyến của đồ thị (C) (H.9.3). Tìm hệ số góc kPQ của cát tuyến PQ.

Trả lời

a) Ta có: PQ=xx0;fxfx0 . Suy ra nPQ=fxfx0;x0x  .

Phương trình đường thẳng PQ là

[f(x) – f(x0)](x – x0) + (x – x)[y – f(x0)] = 0

Hay [f(x) – f(x0)]x – (x – x0)y – f(x)x0 + xf(x0) = 0

Tức là y = fxfx0xx0x+xfx0x0fxxx0  .

Do đó, hệ số góc của cát tuyến PQ là  kPQ=f(x)f(x0)xx0.

Câu hỏi cùng chủ đề

Xem tất cả