Câu hỏi:
25/01/2024 49
Nghiệm của đa thức f(x) = (x3 + 3x2 + 2x) : x (x ≠ 0) là:
Nghiệm của đa thức f(x) = (x3 + 3x2 + 2x) : x (x ≠ 0) là:
A. x = −2;
B. x = 2 hoặc x = 1;
C. x = −1;
D. x = −2 hoặc x = −1.
Trả lời:
Đáp án đúng là: D
f(x) = (x3 + 3x2 + 2x) : x
= x2 + 3x + 2
Ta có: f(−2) = 0; f(−1) = 0; f(0) = 2; f(1) = 6.
Ta thấy tại x = −2 hoặc x = −1 thì f(x) = 0.
Suy ra nghiệm của f(x) là: x = −2 hoặc x = −1.
Đáp án đúng là: D
f(x) = (x3 + 3x2 + 2x) : x
= x2 + 3x + 2
Ta có: f(−2) = 0; f(−1) = 0; f(0) = 2; f(1) = 6.
Ta thấy tại x = −2 hoặc x = −1 thì f(x) = 0.
Suy ra nghiệm của f(x) là: x = −2 hoặc x = −1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ta có F = G . Q + R. Biết Q và R là thương và dư của phép chia F : G (G ≠ 0). Tìm R biết F = 5x3 + x2 + 4x + 3 và G = 2x + 2.
Ta có F = G . Q + R. Biết Q và R là thương và dư của phép chia F : G (G ≠ 0). Tìm R biết F = 5x3 + x2 + 4x + 3 và G = 2x + 2.
Câu 2:
Tìm điều kiện của n sao cho số 2n2 + 3n + 1 chia hết cho số 2n + 1.
Tìm điều kiện của n sao cho số 2n2 + 3n + 1 chia hết cho số 2n + 1.
Câu 3:
Tìm đa thức P sao cho A = B. P. Biết A = 4x4 – 6x3 – 6x2 + 6x + 2 và
B = 2x2 – 2.
Tìm đa thức P sao cho A = B. P. Biết A = 4x4 – 6x3 – 6x2 + 6x + 2 và
B = 2x2 – 2.
Câu 4:
Cho đa thức A(x) = 3x4 + 11x3 − 5x2 – 19x + 10. Đa thức H(x) thỏa mãn
A(x) = (3x2 + 2x – 5). H(x) là:
Cho đa thức A(x) = 3x4 + 11x3 − 5x2 – 19x + 10. Đa thức H(x) thỏa mãn
A(x) = (3x2 + 2x – 5). H(x) là:
Câu 5:
Bậc, hệ số lớn nhất, hệ số tự do của đa thức
g(x) = (2x5 + 3x4 + 3x3 + 2x) : (2x) lần lượt là:
Bậc, hệ số lớn nhất, hệ số tự do của đa thức
g(x) = (2x5 + 3x4 + 3x3 + 2x) : (2x) lần lượt là:
Câu 6:
Phép chia đa thức 2x3 – 3x2 + x cho đa thức 5x7 – 2n ( n ∈ ℕ và 0 ≤ n ≤ 3)
Tìm n để phép chia trên là phép chia hết.
Phép chia đa thức 2x3 – 3x2 + x cho đa thức 5x7 – 2n ( n ∈ ℕ và 0 ≤ n ≤ 3)
Tìm n để phép chia trên là phép chia hết.