Một rạp chiếu phim có sức chứa 1 000 người. Với giá vé là 40 000 đồng, trung bình sẽ có khoảng 300 người
188
15/01/2024
Bài 6.20 trang 15 SBT Toán 10 Tập 2: Một rạp chiếu phim có sức chứa 1 000 người. Với giá vé là 40 000 đồng, trung bình sẽ có khoảng 300 người đến rạp xem phim mỗi ngày. Để tăng số lượng vé bán ra, rạp chiếu phim đã khảo sát thị trường và thấy rằng nếu giá vé cứ giảm 10 000 đồng thì sẽ có thêm 100 người đến rạp mỗi ngày.
a) Tìm công thức của hàm số R(x) mô tả doanh thu từ tiền bán vé mỗi ngày của rạp chiếu phim khi giá vé là x nghìn đồng.
b) Tìm mức giá vé để doanh thu từ tiền bán vé mỗi ngày của rạp là lớn nhất.
Trả lời
a) Giá vé là x nghìn đồng.
Khi giá vé là x (nghìn đồng) thì số tiền giảm giá mỗi vé so với mức giá cũ là 40 – x (nghìn đồng). Do nếu giá vé cứ giảm 10 000 đồng thì sẽ có thêm 100 người đến rạp mỗi ngày nên số người tăng lên sau khi giảm giá vé là: .
Ban đầu chưa giảm giá vé thì số người đến rạp mỗi ngày là 300 người. Số người đến rạp chiếu phim mỗi ngày sau khi giảm giá là:
300 + 10(40 – x) = 700 – 10x.
Công thức của hàm số R(x) mô tả doanh thu từ tiền bán vé mỗi ngày khi giá vé là x (nghìn đồng) là:
R(x) = x.(700 – 10x) = –10x2 + 700x (nghìn đồng).
b) Công thức của hàm số R(x) mô tả doanh thu từ tiền bán vé mỗi ngày khi giá vé là x (nghìn đồng) là: R(x) = –10x2 + 700x là một hàm số bậc hai có a = –10 < 0 nên có đồ thị là parabol có bề lõm hướng xuống, do đó giá trị lớn nhất của hàm số là tung độ của đỉnh parabol. Vậy mức giá vé để doanh thu từ tiền bán vé mỗi ngày của rạp là lớn nhất là hoành độ của đỉnh parabol là: (nghìn đồng).
Khi đó, R(35) = –10 . 352 + 700 . 35 = 12 250 (nghìn đồng).
Vậy khi giá bán mỗi vé là 35 000 đồng thì doanh thu từ tiền bán vé mỗi ngày của rạp là lớn nhất là 12 250 000 đồng.
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 5
Bài 15: Hàm số
Bài 16: Hàm số bậc hai
Bài 17: Dấu của tam thức bậc hai
Bài 18: Phương trình quy về phương trình bậc hai
Bài tập cuối chương 6