Câu hỏi:

03/04/2024 47

Một lô hàng gồm 30 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm. Xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt bằng

A. 135988

B. 3247

C. 244247

Đáp án chính xác

D. 1526

Trả lời:

verified Giải bởi Vietjack

Chọn ra ba sản phẩm tùy ý có C403=9880 cách chọn. Do đó nΩ=9880.
Gọi A là biến cố có ít nhất 1 sản phẩm tốt. Khi đó là biến cố 3 sản phẩm không có sản phẩm tốt.
nA¯=C103=120.
Do đó nA=nΩ=nA¯=9880120=9760.
Vậy PA=97609880=244247

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng

Xem đáp án » 03/04/2024 77

Câu 2:

Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8 ta lập các số tự nhiên có 6 chữ số, đôi một khác nhau. Chọn ngẫu nhiên một số vừa lập, xác suất để chọn được một số có đúng 3 chữ số lẻ mà các chữ số lẻ xếp kề nhau bằng

Xem đáp án » 03/04/2024 77

Câu 3:

Một hộp đựng 5 viên bi đỏ, 4 viên bi xanh. Lấy ngẫu nhiên 3 viên bi từ hộp đó. Xác suất lấy được ít nhất 1 viên đỏ bằng

Xem đáp án » 03/04/2024 68

Câu 4:

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng.

Xem đáp án » 03/04/2024 65

Câu 5:

Gieo ngẫu nhiên 2 con súc sắc cân đối đồng chất. Xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con súc sắc bằng 1” là

Xem đáp án » 03/04/2024 65

Câu 6:

Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt cho 1, 2, 3 và n điểm phân biệt n3;n   khác A, B, C, D. Lấy ngẫu nhiên 3 điểm từ n+6 điểm đã cho. Biết xác suất lấy được một tam giác là 439560.Tìm n.

Xem đáp án » 03/04/2024 63

Câu 7:

Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng

Xem đáp án » 03/04/2024 62

Câu 8:

Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng

Xem đáp án » 03/04/2024 60

Câu 9:

Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng

Xem đáp án » 03/04/2024 52

Câu 10:

Một hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp đó. Xác suất để viên bi được lấy lần thứ 2 là bi xanh bằng

Xem đáp án » 03/04/2024 52

Câu 11:

Một hộp đựng 15 viên bi, trong đó có 7 viên bi xanh và 8 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi (không kể thứ tự) ra khỏi hộp. Tính xác suất để trong 3 viên bi lấy ra có ít nhất 1 viên màu đỏ.

Xem đáp án » 03/04/2024 49

Câu 12:

Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng

Xem đáp án » 03/04/2024 49

Câu 13:

Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.

Xem đáp án » 03/04/2024 48

Câu 14:

Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1; 3; 5; 7; 9. Tính xác suất để tìm được một số không bắt đầu bởi 135.

Xem đáp án » 03/04/2024 45

Câu 15:

Cho hai đường thẳng song song ab. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng ab. Xác suất để 3 điểm được chọn tạo thành một tam giác bằng.

Xem đáp án » 03/04/2024 45