Câu hỏi:
03/04/2024 52
Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng
A.
B.
C.
D.
Trả lời:
Không gian mẫu có số phần tử là: (phần tử).
Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.
Khi đó ta có các trường hợp sau:
Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.
Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.
Do đó trường hợp này có: 2.13 = 26 cách lấy.
Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.
Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.
Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.
Xác suất để trong ba số được chọn không có hai số liên tiếp là: .
Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.
Khi đó ta có các trường hợp sau:
Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.
Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.
Do đó trường hợp này có: 2.13 = 26 cách lấy.
Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.
Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.
Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.
Xác suất để trong ba số được chọn không có hai số liên tiếp là: .
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng
Câu 2:
Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8 ta lập các số tự nhiên có 6 chữ số, đôi một khác nhau. Chọn ngẫu nhiên một số vừa lập, xác suất để chọn được một số có đúng 3 chữ số lẻ mà các chữ số lẻ xếp kề nhau bằng
Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8 ta lập các số tự nhiên có 6 chữ số, đôi một khác nhau. Chọn ngẫu nhiên một số vừa lập, xác suất để chọn được một số có đúng 3 chữ số lẻ mà các chữ số lẻ xếp kề nhau bằng
Câu 3:
Một hộp đựng 5 viên bi đỏ, 4 viên bi xanh. Lấy ngẫu nhiên 3 viên bi từ hộp đó. Xác suất lấy được ít nhất 1 viên đỏ bằng
Một hộp đựng 5 viên bi đỏ, 4 viên bi xanh. Lấy ngẫu nhiên 3 viên bi từ hộp đó. Xác suất lấy được ít nhất 1 viên đỏ bằng
Câu 4:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng.
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng.
Câu 5:
Gieo ngẫu nhiên 2 con súc sắc cân đối đồng chất. Xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con súc sắc bằng 1” là
Gieo ngẫu nhiên 2 con súc sắc cân đối đồng chất. Xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con súc sắc bằng 1” là
Câu 6:
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt cho 1, 2, 3 và n điểm phân biệt khác A, B, C, D. Lấy ngẫu nhiên 3 điểm từ n+6 điểm đã cho. Biết xác suất lấy được một tam giác là .Tìm n.
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt cho 1, 2, 3 và n điểm phân biệt khác A, B, C, D. Lấy ngẫu nhiên 3 điểm từ n+6 điểm đã cho. Biết xác suất lấy được một tam giác là .Tìm n.
Câu 7:
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
Câu 8:
Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng
Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng
Câu 9:
Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng
Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng
Câu 10:
Một hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp đó. Xác suất để viên bi được lấy lần thứ 2 là bi xanh bằng
Một hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp đó. Xác suất để viên bi được lấy lần thứ 2 là bi xanh bằng
Câu 11:
Một hộp đựng 15 viên bi, trong đó có 7 viên bi xanh và 8 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi (không kể thứ tự) ra khỏi hộp. Tính xác suất để trong 3 viên bi lấy ra có ít nhất 1 viên màu đỏ.
Một hộp đựng 15 viên bi, trong đó có 7 viên bi xanh và 8 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi (không kể thứ tự) ra khỏi hộp. Tính xác suất để trong 3 viên bi lấy ra có ít nhất 1 viên màu đỏ.
Câu 12:
Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.
Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.
Câu 13:
Một lô hàng gồm 30 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm. Xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt bằng
Một lô hàng gồm 30 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm. Xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt bằng
Câu 14:
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b. Xác suất để 3 điểm được chọn tạo thành một tam giác bằng.
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b. Xác suất để 3 điểm được chọn tạo thành một tam giác bằng.
Câu 15:
Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1; 3; 5; 7; 9. Tính xác suất để tìm được một số không bắt đầu bởi 135.
Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1; 3; 5; 7; 9. Tính xác suất để tìm được một số không bắt đầu bởi 135.