Một giải bóng đá gồm 16 đội, trong đó có 4 đội của nước V. Ban tổ chức bốc thăm
186
16/01/2024
Bài 36 trang 48 SBT Toán 10 Tập 2:
Một giải bóng đá gồm 16 đội, trong đó có 4 đội của nước V. Ban tổ chức bốc thăm ngẫu nhiên để chia thành 4 bảng đấu A, B, C, D, mỗi bảng đấu có 4 đội. Tính xác suất của biến cố “Bốn đội của nước V ở 4 bảng đấu khác nhau”.
Trả lời
Mỗi cách chọn 4 đội trong số 16 đội để xếp vào bảng A là một tổ hợp chập 4 của 16 phần tử.
Mỗi cách chọn 4 đội tiếp theo trong số 12 đội còn lại để xếp vào bảng B là một tổ hợp chập 4 của 12 phần tử.
Mỗi cách chọn 4 đội tiếp theo trong số 8 đội còn lại để xếp vào bảng C là một tổ hợp chập 4 của 8 phần tử.
Lúc này, 4 đội cuối cùng sẽ được xếp vào bảng D.
Do đó số phần tử của không gian mẫu là: n(Ω) = .
Gọi E là biến cố “Bốn đội của nước V ở 4 bảng đấu khác nhau”.
Số cách xếp 4 đội của nước V vào bảng đấu là 4! = 24.
Mỗi cách chọn 3 đội trong 12 đội còn lại không phải của nước V để xếp vào bảng A là một tổ hợp chập 3 của 12 phần tử.
Mỗi cách chọn 3 đội tiếp theo trong 9 đội còn lại không phải của nước V để xếp vào bảng B là một tổ hợp chập 3 của 9 phần tử.
Mỗi cách chọn 3 đội tiếp theo trong 6 đội còn lại không phải của nước V để xếp vào bảng C là một tổ hợp chập 3 của 6 phần tử.
Lúc này, 3 đội cuối cùng sẽ được xếp vào bảng D.
Vì vậy số cách xếp 12 đội còn lại vào 4 bảng đấu là: .
Suy ra số phần tử của biến cố E là: n(E) = .
Vậy xác suất của biến cố E là: .
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 3: Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản
Bài 5: Xác suất của biến cố
Bài tập cuối chương 6
Bài 1: Tọa độ của vectơ
Bài 2: Biểu thức tọa độ của các phép toán vectơ