Mặt cắt đứng của cột cây số trên quốc lộ có dạng nửa hình tròn ở phía trên và phía dưới có dạng hình

Bài 6.32 trang 21 SBT Toán 10 Tập 2: Mặt cắt đứng của cột cây số trên quốc lộ có dạng nửa hình tròn ở phía trên và phía dưới có dạng hình chữ nhật (xem hình dưới). Biết rằng đường kính của nửa hình tròn cũng là cạnh phía trên của hình chữ nhật và đường chéo của hình chữ nhật có độ dài 66 cm. Tìm kích thước của hình chữ nhật, biết rằng diện tích của phần nửa hình tròn bằng 0,3 lần diện tích của phần hình chữ nhật. Lấy π = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai.

Sách bài tập Toán 10 Bài 18: Phương trình quy về phương trình bậc hai - Kết nối tri thức (ảnh 1)

Trả lời

Sách bài tập Toán 10 Bài 18: Phương trình quy về phương trình bậc hai - Kết nối tri thức (ảnh 1)

Gọi đường kính của nửa hình tròn là x (cm) (x > 0).

Độ dài cạnh phía trên của hình chữ nhật bằng đường kính của nửa hình tròn hay AB = x (cm).

Xét tam giác vuông ABD

Áp dụng định lí Pythagore, ta có:

BD2 = AD2 + AB2

⇔ AD2 = BD2  – AB2

Suy ra 

 AD=BD2AB2=662x2=4356x2.

Độ dài cạnh còn lại của hình chữ nhật là AD = 4356x2

Diện tích nửa hình tròn là 12πAB22=12.3,14.x22=3,14x28.

Diện tích hình chữ nhật là x4356x2. Theo giả thiết ta có:

3,14x28=0,3x4356x2

157x=1204356x2 (do x > 0).

Bình phương hai vế của phương trình ta có:

24 649x2 = 14 400(4 356 – x2)

⇔ 24 649x2 = 62 726 400 – 14 400x2

⇔ 39 049x2 = 62 726 400

⇔ x ≈ ± 40,08

Do x > 0 nên ta có: x = 40,08

Độ dài cạnh trên của hình chữ nhật là 40,08 cm, độ dài cạnh còn lại là: 435640,08252,44 (cm)

Vậy kích thước của hình chữ nhật khoảng 40,08 cm × 52,44 cm.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách