Câu hỏi:
12/03/2024 39Không qui đồng, hãy so sánh hai phân số sau: \[\frac{{37}}{{67}}\] và \[\frac{{377}}{{677}}\] .
A. \[\frac{{37}}{{67}} < \frac{{377}}{{677}}\]
</>
B. \[\frac{{37}}{{67}} >\frac{{377}}{{677}}\]
C. \[\frac{{37}}{{67}} = \frac{{377}}{{677}}\]
D. \[\frac{{37}}{{67}} \ge \frac{{377}}{{677}}\]
Trả lời:
Ta có :
\[1 - \frac{{37}}{{67}} = \frac{{30}}{{67}};\;\;\;\;1 - \frac{{377}}{{677}} = \frac{{300}}{{677}}.\]
Lại có: \[\frac{{30}}{{67}} = \frac{{300}}{{670}} >\frac{{300}}{{677}}\] nên . \[\frac{{37}}{{67}} < \frac{{377}}{{677}}\]
Đáp án cần chọn là: A
</>
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Có bao nhiêu giá trị nguyên của nn để A có giá trị nguyên.
Câu 4:
Rút gọn phân số \[A = \frac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\] đến tối giản ta được kết quả là phân số có mẫu số là
Câu 5:
Sắp xếp các phân số sau: \[\frac{1}{3};\frac{1}{2};\frac{3}{8};\frac{6}{7}\] theo thứ tự từ lớn đến bé.
Câu 8:
Tính nhanh \[A = \frac{5}{{1.3}} + \frac{5}{{3.5}} + \frac{5}{{5.7}} + ... + \frac{5}{{99.101}}\]
Câu 10:
Tìm một phân số ở giữa hai phân số \(\frac{1}{{10}}\) và \(\frac{2}{{10}}\) .
Câu 11:
Cho x là giá trị thỏa mãn \[\,\,\,\,\,\frac{6}{7}x - \frac{1}{2} = 1\]
Câu 12:
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Tìm điều kiện của n để A là phân số tối giản.
Câu 15:
Cho \({x_1}\) là giá trị thỏa mãn \[\frac{1}{2} - (\frac{2}{3}x - \frac{1}{3}) = \frac{{ - 2}}{3}\] và \({x_2}\) là giá trị thỏa mãn \[\,\frac{5}{6} - x = \frac{{ - 1}}{{12}} + \frac{4}{3}\] . Khi đó \({x_1} + {x_2}\) bằng