Câu hỏi:
12/03/2024 51Chọn câu đúng
A. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 1.2.3.4.5.6.7...60\]
B. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 1.3.5.7...59\]
C. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 1.3.5.7...60\]
D. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 2.4.6.8...60\]
Trả lời:
Ta có \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = \frac{{31.32.33...60}}{{2.2.2....2}} = \frac{{\left( {31.32.33...60} \right)\left( {1.2.3...30} \right)}}{{{2^{30}}\left( {1.2.3...30} \right)}}\]
\[ = \frac{{1.2.3.4.5...60}}{{\left( {1.2} \right).\left( {2.2} \right).\left( {3.2} \right).\left( {4.2} \right)...\left( {30.2} \right)}} = \frac{{\left( {2.4.6...60} \right)\left( {1.3.5.7...59} \right)}}{{2.4.6...60}} = 1.3.5...59\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Có bao nhiêu giá trị nguyên của nn để A có giá trị nguyên.
Câu 3:
Rút gọn phân số \[A = \frac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\] đến tối giản ta được kết quả là phân số có mẫu số là
Câu 4:
Sắp xếp các phân số sau: \[\frac{1}{3};\frac{1}{2};\frac{3}{8};\frac{6}{7}\] theo thứ tự từ lớn đến bé.
Câu 7:
Cho x là giá trị thỏa mãn \[\,\,\,\,\,\frac{6}{7}x - \frac{1}{2} = 1\]
Câu 8:
Tính nhanh \[A = \frac{5}{{1.3}} + \frac{5}{{3.5}} + \frac{5}{{5.7}} + ... + \frac{5}{{99.101}}\]
Câu 10:
Tìm một phân số ở giữa hai phân số \(\frac{1}{{10}}\) và \(\frac{2}{{10}}\) .
Câu 11:
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Tìm điều kiện của n để A là phân số tối giản.
Câu 14:
Cho \({x_1}\) là giá trị thỏa mãn \[\frac{1}{2} - (\frac{2}{3}x - \frac{1}{3}) = \frac{{ - 2}}{3}\] và \({x_2}\) là giá trị thỏa mãn \[\,\frac{5}{6} - x = \frac{{ - 1}}{{12}} + \frac{4}{3}\] . Khi đó \({x_1} + {x_2}\) bằng