Câu hỏi:
12/03/2024 52Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Tìm điều kiện của n để A là phân số tối giản.
A. n ≠ 2k – 1 (k ∈ Z)
B. n ≠ 3k – 1 (k ∈ Z)
C. n ≠ 2k – 1 (k ∈ Z) và n ≠ 3k – 1 (k ∈ Z)
D. n ≠ 2k (k ∈ Z) và n ≠ 3k(k ∈ Z)
Trả lời:
Để A tối giản thì (n-5) và (n+1) là hai số nguyên tố cùng nhau ⇒(n − 5; n + 1) = 1
⇔ (n + 1 – n + 5; n + 1) = 1⇔ (n + 1; 6) = 1
Từ đó (n + 1) không chia hết cho 2 và (n + 1) không chia hết cho 3
Hay n ≠ 2k – 1 và n ≠ 3k – 1 (k ∈ Z)
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Sắp xếp các phân số sau: \[\frac{1}{3};\frac{1}{2};\frac{3}{8};\frac{6}{7}\] theo thứ tự từ lớn đến bé.
Câu 2:
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Có bao nhiêu giá trị nguyên của nn để A có giá trị nguyên.
Câu 5:
Rút gọn phân số \[A = \frac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\] đến tối giản ta được kết quả là phân số có mẫu số là
Câu 8:
Tìm một phân số ở giữa hai phân số \(\frac{1}{{10}}\) và \(\frac{2}{{10}}\) .
Câu 11:
Cho x là giá trị thỏa mãn \[\,\,\,\,\,\frac{6}{7}x - \frac{1}{2} = 1\]
Câu 12:
Tính nhanh \[A = \frac{5}{{1.3}} + \frac{5}{{3.5}} + \frac{5}{{5.7}} + ... + \frac{5}{{99.101}}\]
Câu 14:
Cho \({x_1}\) là giá trị thỏa mãn \[\frac{1}{2} - (\frac{2}{3}x - \frac{1}{3}) = \frac{{ - 2}}{3}\] và \({x_2}\) là giá trị thỏa mãn \[\,\frac{5}{6} - x = \frac{{ - 1}}{{12}} + \frac{4}{3}\] . Khi đó \({x_1} + {x_2}\) bằng
Câu 15:
Cho hai biểu thức \[B = \,\,\left( {\frac{2}{3} - 1\frac{1}{2}} \right):\frac{4}{3} + \frac{1}{2}\] và \[C = \,\frac{9}{{23}}.\frac{5}{8} + \frac{9}{{23}}.\frac{3}{8} - \frac{9}{{23}}\] . Chọn câu đúng