Cho hàm số f(x) = x + 1. a) So sánh f(1) và f(2)

Hoạt động 5 trang 36 Toán lớp 10 Tập 1Cho hàm số f(x) = x + 1.

a) So sánh f(1) và f(2).

b) Chứng minh rằng nếu x1,x2 sao cho x1 < x2 thì f(x1) < f(x2).

 

Trả lời

a) Ta có f(1) và f(2) lần lượt là giá trị của hàm số tại điểm x = -1 và x = 2, khi đó:

f(1) = 1 + 1 = 2, f(2) = 2 + 1 = 3.

Vì 2 < 3 nên f(1) < f(2).

Vậy f(1) < f(2).

b) Ta có f(x1) và f(x2) lần lượt là các giá trị của hàm số tại x1 và x2, khi đó f(x1) = x1 + 1, f(x2) = x2 + 1

Vì x1 < x2 nên x1 + 1 < x2 + 1

Do đó: f(x1) < f(x2) với mọi x1,x2.

Vậy f(x1) < f(x2) với mọi x1,x2 thỏa mãn x1 < x2.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Bài 1: Hàm số và đồ thị

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 3: Dấu của tam thức bậc hai

Bài 4: Bất phương trình bậc hai một ẩn

Câu hỏi cùng chủ đề

Xem tất cả