Gọi S là tập hợp các giá trị thực của tham số m để phương trình

Gọi S là tập hợp các giá trị thực của tham số m để phương trình sau có 3 nghiệm thực phân biêt 3x3x22mlog33x22x+5+3x2+2xlog13x3x22m+4=0.Tích các phần tử của S là 

A. 6136.                         
B. 25108.                          
C. 2554.     
D54.

Trả lời

Chọn B.

Ta có

3x3x22mlog33x22x+5+3x2+2xlog13x3x22m+4=0

 

33x3x22m.log3x22x+5=log3x3x22m+4.3x2+2x

log3x22x+1+4.3x22x+1=log3x3x22m+4.3x3x22m,*

 

Xét hàm số ft=3t.log3t+4,t0

Ta có f't=3t.ln3.log3t+4+1t+4.ln3>0,t0.

Suy ra hàm số f(t) đồng biến trên 0;+

Như vậy *x22x+1=x3x22mm=x332x2+2x1,1m=x3+12x22x+1,2,**

Đặt hx=x332x2+2x1gx=x3+12x22x+1

Gọi S là tập hợp các giá trị thực của tham số m để phương trình (ảnh 1)

Ta có giao điểm của đồ thị h(x) và g(x) là điểm K1;12

Ta có h'x=3x23x+2>0,xhx đồng biến trên .

Ta có: g'x=3x2+x2=0x=1x=23

Điểm cực đại của đồ thị H1;52, điểm cực tiểu của đồ thị L23;527

Như vậy để phương trình đã cho có đúng 3 nghiệm thì (**) có đúng 3 nghiệm  pt (1) có 1 nghiệm và pt (2) có đúng 2 nghiệm phân biệt hoặc pt (1) có 1 nghiệm và pt (2) có đúng 3 nghiệm phân biệt trong đó có 1 nghiệm chung x=1

m=52m=527m=12 suy ra tích các giá trị m thỏa yêu cầu bài toán là 25108.

Câu hỏi cùng chủ đề

Xem tất cả