Gọi A’, B’ và C’ lần lượt là ảnh của ba điểm thẳng hàng A, B, C qua phép vị tự V(O, k). Cho biết

Gọi A’, B’ và C’ lần lượt là ảnh của ba điểm thẳng hàng A, B, C qua phép vị tự V(O, k). Cho biết BA=mBC, hai vectơ B'A' và mB'C' có bằng nhau không?

Gọi A’, B’ và C’ lần lượt là ảnh của ba điểm thẳng hàng A, B, C qua phép vị tự V(O, k). Cho biết (ảnh 1)

Trả lời

Theo bài, ta có A’, B’ lần lượt là ảnh của A, B qua V(O, k).

Áp dụng tính chất 1, ta được B'A'=kBA.

Chứng minh tương tự, ta được B'C'=kBC.

Ta có B'A'=kBA=k.mBC=m.kBC=mB'C'.

Vậy hai vectơ B'A' và mB'C' bằng nhau.

Câu hỏi cùng chủ đề

Xem tất cả