Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau: a) “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”
352
10/06/2023
Bài 4 trang 45 Toán lớp 10 Tập 2: Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:
a) “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”;
b) “Mặt 1 chấm xuất hiện ít nhất một lần”.
Trả lời
Không gian mẫu trong trò chơi trên là tập hợp
Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},
trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.
Vậy n(Ω) = 36.
a) Gọi biến cố A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.
(Không bé hơn 10, có nghĩa là lớn hơn hoặc bằng 10).
Các kết quả thuận lợi cho biến cố A là: (4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6).
Hay A = {(4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6)}.
Vì thế n(A) = 6.
Vậy xác xuất của biến cố A là:
b) Gọi biến cố B: “Mặt 1 chấm xuất hiện ít nhất một lần”.
Các kết quả thuận lợi cho biến cố B là: (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1).
Hay B = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1)}. Vì thế n(B) = 11.
Vậy xác xuất của biến cố B là:
Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm
Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản
Bài 5: Xác suất của biến cố
Bài tập cuối chương 6
Chủ đề 2: Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng