Câu hỏi:

03/04/2024 27

Giải các phương trình lượng giác sau:

1. \({\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\)

2. \(\sqrt 3 \sin x + \cos x = 2\)

3. \(\cos 3x - \sin 2x - \cos x = 0\)

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

1. TH1: \(\cos x = 0.\)

TH2: \(\cos x \ne 0,\) chia cả 2 vế của phương trình cho \({\cos ^2}x\), sử dụng công thức \(\frac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x,\) đưa về phương trình bậc hai ẩn \(\tan x.\)

2. Phương trình dạng \(a\sin x + b\cos x = c,\) chia cả 2 vế của phương trình cho \(\sqrt {{a^2} + {b^2}} .\)

3. Sử dụng công thức biến đổi tổng thành tích \(\cos a - \cos b = - 2\sin \frac{{a + b}}{2}\sin \frac{{a - b}}{2}.\)

Cách giải:

1. \({\sin ^2}x + 5\sin x\cos + 6{\cos ^2}x = 6\)

TH1: \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1,\) khi đó phương trình trở thành \(1 = 6\) (vô nghiệm).

TH2: \(\cos x \ne 0.\) Chia cả 2 vế của phương trình cho \({\cos ^2}x\), ta được:

\({\tan ^2}x + 5\tan x + 6 = 6\left( {1 + {{\tan }^2}x} \right) \Leftrightarrow 5{\tan ^2}x - 5\tan x = 0\)

\( \Leftrightarrow 5\tan x\left( {\tan x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\tan x = 0\\\tan x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{4} + k\pi \end{array} \right.\left( {k \in Z} \right)\)

Vậy nghiệm của hệ phương trình là \(S = \left\{ {k\pi ;\frac{\pi }{4} + k\pi \left| {k \in Z} \right.} \right\}.\)

2. \(\sqrt 3 \sin x + \cos x = 2\)

c)

\( \Leftrightarrow - 2\sin 2x\sin x - sin2x = 0 \Leftrightarrow - \sin 2x\left( {2\sin x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\sin x = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \frac{{ - \pi }}{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \frac{{ - \pi }}{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\left( {k \in Z} \right)\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ {\frac{{k\pi }}{2};\frac{{ - \pi }}{6} + k2\pi ;\frac{{7\pi }}{6} + k2\pi \left| {k \in Z} \right.} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gieo 3 con súc sắc cân đối, đồng chất. Xác suất để tích số chấm xuất hiện trên mặt của 3 con súc sắc lập thành một số nguyên tố là

Xem đáp án » 03/04/2024 42

Câu 2:

Trong một giải cầu lông có 6 vận động viên tham dự nội dung đơn nam, số cách trao một bộ huy chương gồm 1 huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là

Xem đáp án » 03/04/2024 40

Câu 3:

Đa giác đều nào có 20 đường chéo

Xem đáp án » 03/04/2024 40

Câu 4:

Trong khai triển \(f\left( x \right) = {\left( {{x^2} + \frac{2}{x}} \right)^9}\left( {x \ne 0} \right)\) thì số hạng tự do (số hạng không chứa x) là:

Xem đáp án » 03/04/2024 39

Câu 5:

Cho điểm \(A\left( {1;12} \right)\). Gọi \(A' = {D_{Ox}}\left( A \right)\) khi đó tọa độ điểm \(A'\) là:

Xem đáp án » 03/04/2024 39

Câu 6:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)

2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).

3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)

Xem đáp án » 03/04/2024 38

Câu 7:

Một lớp học có 20 học sinh nam và 24 học sinh nữ. Khi đó số cách chọn ra 1 học sinh làm nhiệm vụ trực nhật là:

Xem đáp án » 03/04/2024 37

Câu 8:

Cho hai điểm \(A\left( {1;2} \right);I\left( {3;4} \right).\) Gọi \(A' = {D_I}\left( A \right)\) khi đó điểm \(A'\) có tọa độ là:

Xem đáp án » 03/04/2024 37

Câu 9:

Điều kiện cần và đủ của tham số m để phương trình \(\sin x - \sqrt 3 m\cos x = 2m\) có nghiệm là:

Xem đáp án » 03/04/2024 36

Câu 10:

Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau:

Xem đáp án » 03/04/2024 36

Câu 11:

Trong một lớp học có 20 học sinh nam và 24 học sinh nữ. Chọn ra ngẫu nhiên 2 học sinh đi trực nhật. Khi đó xác suất để đội trực nhật có 1 học sinh nam và 1 học sinh nữ là

Xem đáp án » 03/04/2024 36

Câu 12:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7 lập được bao nhiêu số tự nhiên có 6 chữ số, các chữ số đều khác nhau và số đó lớn hơn 540000?

Xem đáp án » 03/04/2024 36

Câu 13:

Số nghiệm \(x \in \left[ {0;2\pi } \right]\) của phương trình \(\sin x = \frac{{\sqrt 2 }}{2}\) là:

Xem đáp án » 03/04/2024 35

Câu 14:

Nghiệm của phương trình \(\cot x = \cot 2x\) là:

Xem đáp án » 03/04/2024 35

Câu 15:

Trong khai triển \(f\left( x \right) = {\left( {2x - 3} \right)^{16}} = {a_{16}}{x^{16}} + {a_{15}}{x^{15}} + {a_{14}}{x^{14}} + ... + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\) thì tổng của tất cả các hệ số là

Xem đáp án » 03/04/2024 35