Câu hỏi:
03/04/2024 37
Trong một lớp học có 20 học sinh nam và 24 học sinh nữ. Chọn ra ngẫu nhiên 2 học sinh đi trực nhật. Khi đó xác suất để đội trực nhật có 1 học sinh nam và 1 học sinh nữ là
A. 1
B. \(\frac{1}{{480}}\)
C. \(\frac{{240}}{{473}}\)
D. Kết quả khác
Trả lời:
Đáp án C
Phương pháp:
+) Tính số phần tử của không gian mẫu.
+) Tính số phần tử của biến cố.
+) Tính xác suất của biến cố.
Cách giải:
Số cách chọn 2 học sinh bất kì là \(C_{44}^2 = 946\) cách \( \Rightarrow n\left( \Omega \right) = 946.\)
Gọi A là biến cố: “đội trực nhật có 1 học sinh nam và 1 học sinh nữ”.
Số cách chọn 1 học sinh nam là \(C_{20}^1 = 20\) cách,
Số cách chọn 1 học sinh nữ là \(C_{24}^1 = 24\) cách.
Áp dụng quy tắc nhân ta có \(n\left( A \right) = 20.24 = 480\) cách.
Vậy \(P\left( A \right) = \frac{{480}}{{946}} = \frac{{240}}{{473}}.\)
Đáp án C
Phương pháp:
+) Tính số phần tử của không gian mẫu.
+) Tính số phần tử của biến cố.
+) Tính xác suất của biến cố.
Cách giải:
Số cách chọn 2 học sinh bất kì là \(C_{44}^2 = 946\) cách \( \Rightarrow n\left( \Omega \right) = 946.\)
Gọi A là biến cố: “đội trực nhật có 1 học sinh nam và 1 học sinh nữ”.
Số cách chọn 1 học sinh nam là \(C_{20}^1 = 20\) cách,
Số cách chọn 1 học sinh nữ là \(C_{24}^1 = 24\) cách.
Áp dụng quy tắc nhân ta có \(n\left( A \right) = 20.24 = 480\) cách.
Vậy \(P\left( A \right) = \frac{{480}}{{946}} = \frac{{240}}{{473}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo 3 con súc sắc cân đối, đồng chất. Xác suất để tích số chấm xuất hiện trên mặt của 3 con súc sắc lập thành một số nguyên tố là
Câu 3:
Trong một giải cầu lông có 6 vận động viên tham dự nội dung đơn nam, số cách trao một bộ huy chương gồm 1 huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là
Câu 4:
Trong khai triển \(f\left( x \right) = {\left( {{x^2} + \frac{2}{x}} \right)^9}\left( {x \ne 0} \right)\) thì số hạng tự do (số hạng không chứa x) là:
Câu 5:
Cho điểm \(A\left( {1;12} \right)\). Gọi \(A' = {D_{Ox}}\left( A \right)\) khi đó tọa độ điểm \(A'\) là:
Câu 6:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)