Chứng tỏ rằng mọi ước nguyên tố của 2.3.4…2 020. 2 021 – 1 đều lớn hơn 2 021
Bài 96 trang 30 sách bài tập Toán lớp 6 Tập 1: Chứng tỏ rằng mọi ước nguyên tố của 2.3.4…2 020. 2 021 – 1 đều lớn hơn 2 021.
Bài 96 trang 30 sách bài tập Toán lớp 6 Tập 1: Chứng tỏ rằng mọi ước nguyên tố của 2.3.4…2 020. 2 021 – 1 đều lớn hơn 2 021.
Đặt A = 2.3.4…2 020. 2 021 – 1
Gọi k là ước nguyên tố của A = 2.3.4…2 020. 2 021 – 1 (k >1).
Do đó A chia hết cho k.
Giả sử k ≤ 2021, khi đó 2.3.4…2 020. 2 021 chia hết cho k mà A cũng chia hết cho k nên 1 phải chia hết cho k hay k = 1 (vô lý).
Suy ra giả sử sai.
Vậy k > 2021.
Xem thêm các bài giải SBT Toán lớp 6 Cánh diều hay, chi tiết khác:
Bài 8: Dấu hiệu chia hết cho 2, cho 5.
Bài 9: Dấu hiệu chia hết cho 3, cho 9
Bài 11: Phân tích một số ra thừa số nguyên tố