Chứng tỏ đồ thị hàm số y = (m – 1)x + m – 2 luôn đi qua một điểm cố định

Bài 7 trang 13 SBT Toán 8 Tập 2: Chứng tỏ đồ thị hàm số y = (m – 1)x + m – 2 luôn đi qua một điểm cố định.

Trả lời

Giả sử điểm cố định của đồ thị hàm số y = (m – 1)x + m – 2 là I(x0; y0).

Thay x = x0 và y = y0 vào y = (m – 1)x + m – 2, ta được:

y0 = (m – 1)x0 + m – 2

 mx0 – x0 + m – 2 – y0 = 0

 m(x0 + 1) – (y0 + x0 + 2) = 0 (1)

Để (1) luôn đúng với mọi giá trị của m thì Chứng tỏ đồ thị hàm số y = (m – 1)x + m – 2

Vậy đồ thị hàm số y = (m – 1)x + m – 2 luôn đi qua điểm cố định I(–1; –1).

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Khái niệm hàm số

Bài 2: Tọa độ của một điểm và đồ thị của hàm số

Bài 3: Hàm số bậc nhất y = ax + b (a ≠ 0)

Bài 4: Hệ số góc của đường thẳng

Bài tập cuối chương 5

Bài 1: Phương trình bậc nhất một ẩn

Câu hỏi cùng chủ đề

Xem tất cả