Chứng minh rằng trong tam giác đều ABC, trọng tâm G cách đều ba đỉnh của tam giác đó

Luyện tập 1 trang 79 Toán 7 Tập 2:

Chứng minh rằng trong tam giác đều ABC, trọng tâm G cách đều ba đỉnh của tam giác đó.

Trả lời

Giải Toán 7 Bài 35 (Kết nối tri thức): Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 1)Giả sử tam giác đều ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm G.

Do ABC đều nên ABC cân tại A.

Theo kết quả của câu a, Ví dụ 1, trang 78, 79 ta có:

AM là đường trung tuyến của ABC nên AM là đường trung trực của cạnh BC.

Tương tự, ta cũng có:

• ABC đều nên ABC cân tại B, do đó BN là đường trung trực của cạnh AC;

• ABC đều nên ABC cân tại C, do đó CP là đường trung trực của cạnh AB.

Mà ba đường trung trực AM, BN và CP cắt nhau tại trọng tâm G.

Do đó G cách đều ba đỉnh của tam giác ABC.

Vậy trong tam giác đều ABC, trọng tâm G cách đều ba đỉnh của tam giác đó.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 33: Quan hệ giữa ba cạnh của một tam giác

Luyện tập chung trang 71

Bài 34: Sự đồng quy của ba đường trung tuyến. Ba đường phân giác trong một tam giác

Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Luyện tập chung trang 83

Bài tập cuối chương 9

Câu hỏi cùng chủ đề

Xem tất cả