Chứng minh mỗi dãy số sau là cấp số cộng. Xác định công sai của mỗi cấp số cộng đó. a) 3; 7; 11; 15; 19; 23. b) Dãy số (un) với un = 9n – 9. c) Dãy số (vn) với vn = an + b, trong đó a và b là

Chứng minh mỗi dãy số sau là cấp số cộng. Xác định công sai của mỗi cấp số cộng đó.

a) 3; 7; 11; 15; 19; 23.

b) Dãy số (un) với un = 9n – 9.

c) Dãy số (vn) với vn = an + b, trong đó a và b là các hằng số.

Trả lời

a) Dãy số 3; 7; 11; 15; 19; 23 là cấp số cộng với công sai d = 4.

b) Ta có: u1 = 9.1 – 9 = 0.

un+1 = 9(n + 1) – 9 = 9n – 9 + 9 = un + 9, n *.

Vậy dãy số (un) là cấp số cộng với số hạng đầu u1 = 0 và công sai d = – 3.

c) Ta có: v1 = a.1 + b = a + b.

vn+1 = a(n + 1) + b = an + a + b = an + b + a = vn + a, n *.

Vậy dãy số (vn) là cấp số cộng với số hạng đầu v1 = a + b và công sai là d = a.

Câu hỏi cùng chủ đề

Xem tất cả