Chứng minh mỗi đẳng thức sau là đúng: tan 9pi/20 = (1 + tan pi/5) / (1 - tan pi/5)
Chứng minh mỗi đẳng thức sau là đúng:
\(\tan \frac{{9\pi }}{{20}} = \frac{{1 + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{5}}}\).
Chứng minh mỗi đẳng thức sau là đúng:
\(\tan \frac{{9\pi }}{{20}} = \frac{{1 + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{5}}}\).
Ta có\(\tan \frac{{9\pi }}{{20}} = \tan \left( {\frac{\pi }{4} + \frac{\pi }{5}} \right) = \frac{{\tan \frac{\pi }{4} + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{4}.\tan \frac{\pi }{5}}} = \frac{{1 + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{5}}}\).
Vậy \(\tan \frac{{9\pi }}{{20}} = \frac{{1 + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{5}}}\) (đpcm).