Câu hỏi:
30/01/2024 53Chọn đáp án đúng.
A. \[\widehat {AID}\]và \[\widehat {CIB}\] là hai góc kề bù;
B. \[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù;
C. \[\widehat {AIB}\] và \[\widehat {BIC}\] là hai góc kề bù;
D. \[\widehat {AIB}\] và \[\widehat {DIC}\] là hai góc kề bù.
Trả lời:
Đáp án đúng là: C
\[\widehat {AID}\]và \[\widehat {CIB}\] là hai góc hai góc kề bù (sai, vì \[\widehat {AID}\]và \[\widehat {CIB}\] là hai góc hai góc đối đỉnh loại phương án A);
\[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù (sai, vì \[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc của tứ giác ABCD, loại phương án B);
\[\widehat {AIB}\] và \[\widehat {BIC}\] là hai góc kề bù (đúng, chọn phương án C);
\[\widehat {AIB}\] và \[\widehat {DIC}\] là hai góc kề bù (sai, vì \[\widehat {AIB}\] và \[\widehat {DIC}\] là hai góc đối đỉnh, loại phương án D).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vẽ. Tính góc FEC, biết EF // DC và \[\widehat {ECB} = 60^\circ \]:
Câu 3:
Cho các phát biểu sau:
(1) Tổng số đo hai góc kề nhau bằng 180o;
(2) Hai góc bằng nhau thì đối đỉnh;
(3) Hai đường thẳng song song thì cắt nhau;
(4) Hai góc kề bù có tổng số đo bằng 180o;
(5) Nếu NH = NK thì N là trung điểm của HK.
Có bao nhiêu phát biểu đúng?
Câu 5:
Cho hình thang ABCD như hình vẽ. Biết MN // DC, \[\widehat {DAB} = 120^\circ \] và \[\widehat {ANM} = 40^\circ \]. Số đo góc AHD là:
Câu 6:
Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 124^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
Câu 7:
Cho ba đường thẳng phân biệt a, b và c, biết c // a và c // b. Kết luận nào đúng:
Câu 8:
Hai đường thẳng mn và m’n’ cắt nhau tại điểm O. Góc đối đỉnh của \[\widehat {mOn'}\] là:
Câu 9:
Cho hình vẽ
Biết x // y, \[\widehat {{H_3}} = 39^\circ .\]Tính \[\widehat {{H_3}} + \widehat {{K_4}}\].
Câu 12:
Cho hai điểm phân biệt H, K. Ta vẽ một đường thẳng x đi qua điểm H và một đường thẳng y đi qua điểm K sao cho x // y. Có thể vẽ được bao nhiêu cặp đường thẳng x, y thỏa mãn điều kiện trên.
Câu 13:
Cho hình bình hành ABCD như hình vẽ. Biết IJ // DC và \[\widehat {JOC} = 34^\circ \].
Số đo góc OCD là: