Câu hỏi:
03/04/2024 37Cho tứ giác ABCD. Trên các cạnh AB, BC, CD, AD lần lượt lấy 3;4;5;6 điểm phân biệt khác các điểm A, B, C, D. Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là
A. 781
B. 624
C. 816
D. 342
Trả lời:
Chọn A
Tổng số điểm vừa lấy bằng: 3 + 4 + 5 + 6 = 18 (điểm).
Mỗi cách chọn ra 3 điểm không nằm trên một cạnh cho ta một tam giác.
Số cách chọn 3 điểm từ 18 điểm là: = 816(cách chọn).
Số cách chọn 3 điểm cùng nằm trên một cạnh là: (cách chọn).
Vậy số tam giác cần tìm bằng: 816 - 35 = 781(tam giác).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bé Minh có một bảng hình chữ nhật gồm 6 hình vuông đơn vị, cố định không xoay như hình vẽ. Bé muốn dùng 3 màu để tô tất cả các cạnh của các hình vuông đơn vị, mỗi cạnh tô một lần sao cho hình vuông đơn vị được tô bởi đúng 2 màu, trong đó mỗi màu tô đúng hai cạnh. Hỏi bé Minh có tất cả bao nhiêu cách tô màu bảng?
Câu 2:
Có bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau, sao cho trong mỗi số đó nhất thiết phải có mặt chữ số 0?
Câu 3:
Cho đa giác đều có 20 cạnh. Có bao nhiêu hình chữ nhật (không phải là hình vuông), có các đỉnh là đỉnh của đa giác đều đã cho?
Câu 4:
Có 6 học sinh và 3thầy giáo A, B, C ngồi trên một hàng ngang có 9 ghế. Số cách xếp chỗ ngồi cho 9 người đó sao cho mỗi thầy giáo ngồi giữa hai học sinh là
Câu 5:
Gieo 2 xúc xắc màu xanh và đỏ cùng 1 lần. Hỏi có bao nhiêu khả năng xảy ra số chấm xuất hiện của xúc xắc màu xanh nhiều hơn số chấm xuất hiện trên xúc xắc màu đỏ.
Câu 7:
Có bao nhiêu cách bỏ đồng thời 7 quả bóng bàn giống nhau vào 4 hộp khác nhau sao cho mỗi hộp có ít nhất 1 quả?
Câu 9:
Từ các chữ số 1,2,3,4,5,6 lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau?
Câu 10:
Với k, n là hai số nguyên dương tùy ý thỏa mãn k ≤ n, mệnh đề nào dưới đây sai?
Câu 11:
Cho các số nguyên dương tùy ý k, n thỏa mãn kn. Đẳng thức nào dưới đây đúng ?
Câu 12:
Cho A = {1,2,3,4}. Từ A lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?
Câu 14:
Đề kiểm tra 15 phút có 10 câu trắc nghiệm, mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, mỗi câu trả lời đúng được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.