Cho tứ diện ABCD. Một mặt phẳng cắt bốn cạnh AB, BC, CD, DA lần lượt tại các điểm M, N
292
09/09/2023
Bài 4.19 trang 60 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Một mặt phẳng cắt bốn cạnh AB, BC, CD, DA lần lượt tại các điểm M, N, P, Q.
a) Chứng minh rằng các đường thẳng MN, PQ, AC đôi một song song hoặc đồng quy.
b) Chứng minh rằng các đường thẳng MQ, NP, BD đôi một song song hoặc đồng quy.
Trả lời
a)
Xét 3 mặt phẳng (ABC), (ACD) và (MNPQ)
MN là giao tuyến của (MNPQ) và (ABC)
PQ là giao tuyến của (MNPQ) và (ACD)
AC là giao tuyến của (ABC) và (ACD).
Vậy, theo tính chất 3 giao tuyến của 3 mặt phẳng cắt nhau thì các đường thẳng MN, PQ, AC đôi một song song hoặc đồng quy.
b)
Xét 3 mặt phẳng (ABD), (BCD) và (MNPQ)
MQ là giao tuyến của (MNPQ) và (ABD)
NP là giao tuyến của (MNPQ) và (BCD)
BD là giao tuyến của (ABD) và (BCD).
Vậy, theo tính chất 3 giao tuyến của 3 mặt phẳng cắt nhau thì các đường thẳng MQ, NP, BD đôi một song song hoặc đồng quy.
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 3
Bài 10: Đường thẳng và mặt phẳng trong không gian
Bài 11: Hai đường thẳng song song
Bài 12: Đường thẳng và mặt phẳng song song
Bài 13: Hai mặt phẳng song song
Bài 14: Phép chiếu song song