Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB. a) Chứng minh rằng (G1G2G3) // (BCD). b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD

Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.

a) Chứng minh rằng (G1G2G3) // (BCD).

b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).

Trả lời

Lời giải

a)

Media VietJack

Gọi M, N, P lần lượt là trung điểm của BC, CD, DB.

Trong mp(ABC), xét DABC có G1 là trọng tâm của tam giác nên AG1AM=23;

Trong mp(ACD), xét DACD có G2 là trọng tâm của tam giác nên AG2AN=23;

Trong mp(ABD), xét DABD có G3 là trọng tâm của tam giác nên AG3AP=23.

Trong mp(AMP), xét DAMP có AG1AM=AG3AP=23 nên G1G3­ // MP (theo định lí Thalès đảo).

Mà MP (BCD) nên G1G3­ // (BCD).

Chứng minh tương tự ta cũng có AG2AN=AG3AP=23 nên G2G3 // NP (theo định lí Thalès đảo).

Mà NP (BCD) nên G2G3­ // (BCD).

Ta có: G1G3­ // (BCD);

           G2G3­ // (BCD);

           G1G3, G2G3 cắt nhau tại G3 và cùng nằm trong mp(G1G2G3).

Do đó (G1G2G3) // (BCD).

b)

 Media VietJack

Ta có: B, D cùng thuộc hai mặt phẳng (ABD) và (BCD) nên (ABD) ∩ (BCD) = BD.

Giả sử (ABD) ∩ (G1G2G3) = d.

Ta có: (G1G2G3) // (BCD);

           (ABD) ∩ (BCD) = BD;

           (ABD) ∩ (G1G2G3) = d.

Suy ra d // BD.

Mà G3 (ABD) và G3 (G1G2G3) nên G là giao điểm của (G1G2G3) và (ABD).

Do đó giao tuyến d của hai mặt phẳng (G1G2G3) và (ABD) đi qua điểm G3 và song song với BD, cắt AB, AD lần lượt tại I và K.

Vậy (G1G2G3) ∩ (ABD) = IK.

Câu hỏi cùng chủ đề

Xem tất cả