Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. a) Chứng minh rằng (AFD) // (BEC). b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.

a) Chứng minh rằng (AFD) // (BEC).

b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính ANNC.

Trả lời

Lời giải

a)

Media VietJack

Ta có: BE // AF (do ABEF là hình bình hành);

            AF (AFD)

Do đó BE // (AFD).

Ta cũng có: BC // AD (do ABCD là hình bình hành)

                    AD (AFD)

Do đó BC // (AFD).

Do BE // (AFD);

      BC // (AFD);

      BE, BC cắt nhau tại điểm B và cùng nằm trong mp(BEC)

Suy ra (AFD) // (BEC).

b)

Media VietJack

+) Do (AFD) song song với (P) nên tồn tại hai đường thẳng trong (AFD) song song với (P).

• Trong mp(ABEF), qua điểm M vẽ đường thẳng song song với AF, đường thẳng này cắt AB, EF lần lượt tại I, J.

Khi đó IJ // AF, mà AF (AFD) nên IJ // (AFD).

• Trong mp(ABCD), qua điểm I vẽ đường thẳng song song với AD, cắt CD tại K.

Khi đó IK // AD, mà AD (AFD) nên IK // (AFD).

• Ta có: IJ // (AFD);

             IK // (AFD);

             IJ, IK cắt nhau tại điểm I và cùng nằm trong mp(IJK).

Do đó (IJK) // (AFD).

Mà M IJ, IJ (IJK) nên mp (P) đi qua M và song song với (AFD) chính là mp(IJK).

+) Trong mp(ABCD), AC cắt IK tại N, khi đó N là giao điểm của AC và (P).

Trong mp(ABCD), xét DABC có IN // BC (do IK // AD // BC) nên theo định lí Thalès ta có: ANNC=AIIB.

Trong mp(ABEF), xét DABF có IM // AF nên theo định lí Thalès ta có: AIIB=FMMB.

Gọi O là tâm hình bình hành ABEF. Khi đó O là trung điểm của FB nên FO = OB.

Do M là trọng tâm của DABE nên MB=23OBOM=13OB.

Ta có: ANNC=AIIB=FMMB=FO+OMMB=OB+13OB23OB=43OB23OB=2.

Vậy AMNC=2.

Câu hỏi cùng chủ đề

Xem tất cả