Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho
1.2k
14/08/2023
Luyện tập 6 trang 93 Toán 11 Tập 1: Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho
a) Xác định E, F lần lượt là giao điểm của các đường thẳng AC, BD với mặt phẳng (MNP).
b) Chứng minh rằng các đường thẳng NE, PF và CD cùng đi qua một điểm.
Trả lời
a)
+) Trong mặt phẳng (ABC), gọi giao điểm của MP với AC là E.
Mà MP ⊂ (MNP) nên (MNP) ∩ AC = {E}.
+) Trong mặt phẳng (ABD), gọi giao điểm của MN với BD là F.
Mà MP ⊂ (MNP) nên (MNP) ∩ BD = {F}.
b) • Ta có: N ∈ AD, mà AD ⊂ (ACD) nên N ∈ (ACD).
Lại có N ∈ (MNP)
Do đó N là giao điểm của (ACD) và (MNP).
Mặt khác: MP ∩ AC = {E};
MP ⊂ (MNP);
AC ⊂ (ACD).
Do đó E là giao điểm của (ACD) và (MNP).
Suy ra NE = (MNP) ∩ (ACD).
Trong mặt phẳng (ACD), nối NE cắt CD tại I.
Khi đó I ∈ CD và I ∈ NE ⊂ (MNP)
• Ta có: P ∈ BC, mà BC ⊂ (BCD) nên P ⊂ (BCD)
Lại có P ∈ (MNP)
Do đó P là giao điểm của (BCD) và (MNP).
Mặt khác: MN ∩ BD = {F}.
MN ⊂ (MNP);
BD ⊂ (BCD) .
Do đó F là giao điểm của (BCD) và (MNP).
Suy ra PF = (BCD) ∩ (MNP).
Trong mặt phẳng (BCD), gọi giao điểm của CD với PF là I.
Khi đó I ∈ CD, mà CD ⊂ (ACD)
I ∈ PF, mà PF ⊂ (MNP)
Suy ra I là giao điểm của hai mặt phẳng (MNP) và (ACD).
Hay I nằm trên giao tuyến NE của (MNP) và (ACD).
Do đó I ∈ NE.
Vậy ba đường thẳng NE, PF, CD cùng đi qua điểm I.
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 3: Hàm số liên tục
Bài tập cuối chương 3
Bài 1: Đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song