Câu hỏi:
25/01/2024 85
Cho ∆ABC = ∆MNP. Khẳng định nào sau đây sai?
Cho ∆ABC = ∆MNP. Khẳng định nào sau đây sai?
A. AB = MN;
A. AB = MN;
B. ;
B. ;
C. MP = AC;
D. .
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có ∆ABC = ∆MNP (giả thiết)
Suy ra:
⦁ AB = MN; AC = MP và BC = NP (các cặp cạnh bằng nhau);
⦁ và (các cặp góc bằng nhau).
Vì AB = MN nên phương án A đúng.
Vì MP = AC nên phương án C đúng.
Vì nên phương án D đúng.
Vì vậy phương án B sai.
Do đó ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
Ta có ∆ABC = ∆MNP (giả thiết)
Suy ra:
⦁ AB = MN; AC = MP và BC = NP (các cặp cạnh bằng nhau);
⦁ và (các cặp góc bằng nhau).
Vì AB = MN nên phương án A đúng.
Vì MP = AC nên phương án C đúng.
Vì nên phương án D đúng.
Vì vậy phương án B sai.
Do đó ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC và tam giác tạo bởi ba đỉnh H, I, K bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết AC = IK, BC = HI. Cách kí hiệu nào sau đây đúng?
Cho ∆ABC và tam giác tạo bởi ba đỉnh H, I, K bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết AC = IK, BC = HI. Cách kí hiệu nào sau đây đúng?
Câu 2:
Cho ∆GHK và tam giác tạo bởi ba đỉnh P, Q, R là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và . Cách kí hiệu nào sau đây đúng?
Cho ∆GHK và tam giác tạo bởi ba đỉnh P, Q, R là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và . Cách kí hiệu nào sau đây đúng?
Câu 3:
Cho ∆DEF và tam giác tạo bởi ba đỉnh M, N, P là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và FD = PN. Cách kí hiệu nào sau đây đúng?
Cho ∆DEF và tam giác tạo bởi ba đỉnh M, N, P là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và FD = PN. Cách kí hiệu nào sau đây đúng?