Câu hỏi:

25/01/2024 81

Cho ∆ABC = ∆MNP. Khẳng định nào sau đây sai?


A. AB = MN;                  



B. A^=P^;              


Đáp án chính xác

C. MP = AC;                  

D. B^=N^.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có ∆ABC = ∆MNP (giả thiết)

Suy ra:

AB = MN; AC = MP và BC = NP (các cặp cạnh bằng nhau);

A^=M^;  B^=N^ C^=P^ (các cặp góc bằng nhau).

Vì AB = MN nên phương án A đúng.

Vì MP = AC nên phương án C đúng.

B^=N^ nên phương án D đúng.

Vì vậy phương án B sai.

Do đó ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC và tam giác tạo bởi ba đỉnh H, I, K bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết AC = IK, BC = HI. Cách kí hiệu nào sau đây đúng?

Xem đáp án » 25/01/2024 62

Câu 2:

Cho ∆GHK và tam giác tạo bởi ba đỉnh P, Q, R là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết H^=P^ K^=R^. Cách kí hiệu nào sau đây đúng?

Xem đáp án » 25/01/2024 58

Câu 3:

Cho ∆DEF và tam giác tạo bởi ba đỉnh M, N, P là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết D^=P^ và FD = PN. Cách kí hiệu nào sau đây đúng?

Xem đáp án » 25/01/2024 55

Câu 4:

Cho hình vẽ bên.

Cho hình vẽ bên.  Kết luận nào sau đây đúng? (ảnh 1)

Kết luận nào sau đây đúng?

Xem đáp án » 25/01/2024 52

Câu hỏi mới nhất

Xem thêm »
Xem thêm »