Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác và gọi I là giao điểm của các đường phân giác của tam giác

Bài 1 trang 65 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác và gọi I là giao điểm của các đường phân giác của tam giác. Chứng minh ba điểm A, I, G thẳng hàng.

Trả lời

Sách bài tập Toán 7 Bài 9 (Kết nối tri thức): Tính chất ba đường phân giác của tam giác (ảnh 1)

Vẽ phân giác AD của tam giác ABC.

Xét ABD và ACD có:

AB = AC (do ABC cân tại A),

BAD^=CAD^ (do AD là phân giác của BAC^),

AD là cạnh chung.

Do đó ABD = ACD (c.g.c)

Suy ra DB = DC.

Khi đó AD vừa là đường phân giác vừa là đường trung tuyến của tam giác ABC.

Mà G là trọng tâm của tam giác và I là giao điểm của các đường phân giác của tam giác ABC.

Suy ra hai điểm I và G đều thuộc AD.

Khi đó ba điểm A, I, G thẳng hàng.

Vậy ba điểm A, I, G thẳng hàng.

Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 8: Tính chất ba đường cao của tam giác

Bài 9: Tính chất ba đường phân giác của tam giác

Bài tập cuối chương 8

Bài 1: Làm quen với yếu tố ngẫu 

Bài 2: Làm quen với xác xuất của biến cố ngẫu nhiên