Câu hỏi:
25/01/2024 61Cho M, N là hai điểm phân biệt nằm trên đường trung trực của cạnh AB sao cho AM = BN. O là giao điểm của MN và AB. Khẳng định sai là
A. \(\Delta AMO = \Delta BNO\);
B. \(\Delta AMN\) cân tại A;
C. \(\Delta AMB\) cân tại A;
D. \(\Delta ANB\) cân tại N.
Trả lời:
Đáp án đúng là: C
MN là đường trung trực của AB
⇒ MN ⊥ AB tại O và OA = OB
+) Xét hai tam giác vuông AMO và BNO có:
AM = BN (theo giả thiết)
OA = OB
⇒ \(\Delta AMO = \Delta BNO\) (cạnh huyền – cạnh góc vuông)
+) Ta có: AN = BN (vì N thuộc đường trung trực của AB) ⇒ \(\Delta ANB\) cân tại N.
Mà AM = BN (theo giả thiết)
⇒ AN = AM
⇒ \(\Delta AMN\) cân tại A (đpcm)
+) Có: MA = MB (vì M thuộc đường trung trực của AB)
⇒ \(\Delta AMB\) là tam giác cân tại M.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC và BA = BE (E thuộc BC). Số đo góc BED là
Câu 2:
Cho tam giác ABC có AB = AC . Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chọn câu sai.
Câu 3:
Cho tam giác ABC có M là trung điểm cạnh BC. Kẻ tia Ax đi qua M. Qua B, C lần lượt kẻ các đường thẳng vuông góc với Ax, cắt Ax tại H, K. So sánh BH và CK.
Câu 5:
Cho tam giác ABC vuông tại A và tam giác POI vuông tại I có BC = OP, \(\widehat C = \widehat P\). Khẳng định đúng là
Câu 6:
Cho hình vẽ. Với các kí hiệu trên hình vẽ, cần thêm yếu tố nào để \(\Delta ABC = \Delta ADE\) (g.c.g)
Câu 7:
Cho tam giác MNP cân tại M có \(\widehat P = 50^\circ \). Số đo góc M là
Câu 9:
Cho \(\Delta ABC\) (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là H, I, K. Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng AB = IK, BC = KH.
Câu 10:
Tổng ba góc ngoài (mỗi đỉnh của tam giác ta chỉ lấy một góc) của một tam giác bằng:
Câu 11:
Cho \[\Delta ABC = \Delta MNP\]. Trong các khẳng định sau đây khẳng định nào sai?
Câu 15:
Cho \[\Delta ABC = \Delta MNP\] trong đó \(\widehat A = 30^\circ \), \(\widehat P = 60^\circ \). So sánh các góc N, M, P.